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Editorial

The eighteenth event of the International Conference on Machine Learning and
Data Mining MLDM was held in New York (www.mldm.de) running under the um-
brella of the World Congress “The Frontiers in Intelligent Data and Signal Analysis,
DSA2022” (www.worldcongressdsa.com).

At a time when we are still struggling with the corona pandemic, we scientists
from different nations have gathered together for a peaceful discourse on an important
research focus in the field of data mining and machine learning.

With our conference, we scientists show that we respect the opinions and work of
others. That we are ready to consider them peacefully and in friendship under the
critical view of the high scientific standards that this conference has.

The International Program Committee has done an excellent and time-consuming
job to select the best papers and provide important guidance on the work of the au-
thors. I would like to thank all the members of the Program Committee for their ef-
forts and that you have contributed with your top-class scientific competence.

The best papers are presented at this conference. The acceptance rate is 33%.

Thank you to all the scientists who have participated in this conference with your
excellent work.

A special issue will be done after the conference in the Intern. Journal Transactions
on Machine Learning and Data Mining (http://www.ibai-
publishing.org/journal/mldm/about.php).

I would also like to thank those scientists who have participated in the conference
with their work and have not been successful. Even if we have rejected work, we hope
that the indications of the program committee will encourage you to reconsider your
work and that you will perhaps face the critical scientific consideration of your work
by the international program committee again next year.

The tutorial days rounded up the high quality of the conference. Researchers and
practitioners got an excellent insight in the research and technology of the respective
fields, the new trends and the open research problems that we like to study further.

A tutorial on Data Mining and a tutorial on Case-Based Reasoning, were held after
the conference.

I also thank the members of the Institute of Computer Vision and applied Comput-
er Sciences, Germany (www.ibai-institut.de), who handled the conference as secretar-
iat. We appreciate the help and understanding of the editorial staff at ibai-publishing
house, who supported the publication of these proceedings (http:/www.ibai-
publishing.org/html/proceeding.php).

Last, but not least, we wish to thank all the speakers and participants who contrib-
uted to the success of the conference. We hope to see you in 2023 in New York again
at the next World Congress on “The Frontiers in Intelligent Data and Signal Analysis,
DSA 2023” (www.worldcongressdsa.com), which combines under its roof the follow-
ing three events: International Conferences Machine Learning and Data Mining,
MLDM (www.mldm.de), the Industrial Conference on Data Mining, ICDM
(www.data-mining-forum.de, and the International Conference on Mass Data Analy-


http://www.worldcongressdsa.com/

sis of Signals and Images in Medicine, Biotechnology, Chemistry, Biometry, Securi-
ty, Agriculture, Drug Discovery and Food Industry, MDA (www.mda-signals.de), the
workshops and tutorials.

July 2022 Petra Perner
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Application of Bayesian STRIM to Datasets
Generated via Partial Correspondence
Hypothesis

Yuichi Kato! and Tetsuro Saeki?

! Shimane University,
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ykato@cis.shimane-u.ac. jp
2 Yamaguchi University,
2-16-1 Tokiwadai, Ube city, Yamaguchi 755-8611, JAPAN
tsaeki@yamaguchi-u.ac. jp

Abstract. A statistical test rule induction method (STRIM) was pro-
posed for an if-then rule induction method with a decision table dataset
independently of rough sets theory while not utilizing the notion of ap-
proximation, with the validity of the method confirmed via a simula-
tion experiment using a data generation (DG) model. Nevertheless, the
previous DG model used a plain hypothesis of the complete correspon-
dence with rules, and in this study, the model was improved using a
hypothesis similar to human rating and the rule induction method for
adaption to real-world datasets. Specifically, first, the hypothesis was
expanded from a complete correspondence hypothesis to a partial corre-
spondence hypothesis, and second, the previous STRIM was developed
into a Bayesian STRIM that infers and/or explores the causes on the
basis of the results. The validity and efficacy were confirmed by applying
the Bayesian STRIM to a verification system, whereas the relationship
and difference between the Bayesian STRIM and a maximum a posteriori
probability estimate and a Bayesian network method were also studied
in relation to the rule induction problem.

Keywords: rough sets - if-then rule induction - Bayesian STRIM - sim-
ulation experiment.

1 Introduction

As one of the various existing data mining methods, the rough sets (RS) method,
which is used for inducing if-then rules hidden in a dataset known as a decision
table (DT), has been proposed. A DT is a sample dataset pertaining to a popula-
tion of interest that is arranged in terms of various attributes and the attendant
values. These attributes are known as condition attributes (CAs), and their val-
ues are used for determining a category termed the decision attribute’s (DA’s)
value, which represents the category or grade of the sample. Accordingly, once the
DT has been provided as a learning dataset and if-then rules have been induced
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by combining certain pairs of CAs with the value acting as the condition part of
the rules, with the DA’s value as the decision part, a small number of rules can
be used to arrange a large number of datasets, that is, the induced rules clearly
present the structure of the population and can provide useful knowledge on it.
Zhang et al. summarized the conventional RS methods, including the original
RS theory devised by Pawlak [1], after reviewing a total of 110 studies [2].

However, the conventional RS methods were based on set theory and the
attendant logic, and lacked the statistical view that the DT is simply a sample
dataset obtained from the population of interest so that they induced different
rule sets with every DT obtained from the same population, that is, statisti-
cally significant rule sets could not be induced. Hence, the statistical test rule
induction method (STRIM) and its attendant algorithm were proposed using a
data generation (DG) model and a verification system of induced rules (VSofIR),
which compensated for the shortfalls of the conventional RS methods [3-8]. Here,
the DG model presents a simulation model for generating DTs that obey pre-
specified rules (details are provided later).

Meanwhile, in terms of practical use, the DG model should be matched to a
specific circumstance. For example, when rating the grade of a given sample, a
large number of raters rate the various attributes of the sample and determine
the total grade on the basis of their rated attribute results and their own if-then
rules, using the decision part of the rules if the condition part of the used rules
is met. Nevertheless, in the case where the condition part is not met, the raters
will use their rules while considering the degree of partial correspondence to
their rules, which is what generally occurs in actuality. In this study, this rating
process is labeled a partial corresponding hypothesis (PCH) to distinguish it
from a complete corresponding hypothesis (CCH), and the corresponding rule
induction method is proposed and investigated in the following terms:

(1) A new DG model incorporating PCH is developed using the conventional
DG model, with a DT generated on the basis of PCH as the PCH dataset.

(2) The problems caused by the previous STRIM are clarified by applying it to
the PCH dataset to obtain insights into improving the method.

(3) A new rule induction method termed Bayesian STRIM is proposed along
with the attendant procedure in view of adapting the new DG model, with
its validity and efficacy confirmed using a VSofIR.

(4) The relationship and difference between the Bayesian STRIM and a maxi-
mum a posteriori (MAP) probability estimate and a Bayesian network (BN)
method are considered in relation to the rule induction problem.

2 Improvement of Previous DG Model

In statistics, a dataset U = {u(i)]i = 1,..., N = |U|} is collected from a popu-
lation of interest to estimate and infer the properties and features of the pop-
ulation. Here, u(4) is an object with several attributes, the properties and fea-
tures of which contribute to the estimation and inference of the population.
Let us denote an observation system labeled the DT in the RS theory by
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Input Rule Box & output
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Fig. 1. Simulation model for DG and verification of induced rules. The rule box con-
tains if-then rules R(d, k): if sCP(d,k) then D =d (d=1,2,....,k =12, ...).

Table 1. Complete correspondence hypotheses with regard to the input.

Hypothesis 1[u” (i) coincides with R(d, k), and «” (i) is uniquely determined as
D = d (uniquely determined data).

Hypothesis 2[u” (i) does not coincide with any R(d,k), and u”(i) can only be
determined randomly (indifferent data).

Hypothesis 3[u® (i) coincides with several R(d, k) (d = d1,d2, ...), and their outputs
of uc(i) conflict with each other. Accordingly, the output of u® (3)
must be randomly determined from the conflicted outputs (conflicted
data).

S = (UA=CU{D} V). Here, A is a set of an attribute, D is a DA and
a response variable, and C' = {C(j)|j = 1,...,|C|} is a set of the condition
attribute C(j) and a tuple of explanatory variables for the response variable.
Meanwhile, V' is the set of the attribute’s values, that is, V = UaeA V, and V, is
the set of the value of attribute a. When randomly sampling (%) from the pop-
ulation, each attribute becomes a random variable with the respective attribute
value as its outcome.

Figure 1 outlines the DG process [3,4]. By randomly sampling (i) from the
population, we obtain the outcome of C' = (C(1),...,C(|C|)); that is, u (i) =
(ve(1)(9), - ve(e) (i) is obtained and becomes the input into a rule box. The
rule box transforms u“ (i) into the output v (i) using the rule box’s prespecified
rules R(d, k): if sCP(d,k) then D =d (d =1,2,....k = 1,2,...). Table 1 shows
the subsequent PCH incorporating the input-modifying CCH.

The PCH estimates the degree Dgr of u® (i) corresponding to the box’s pre-
specified rules and the rule of the highest Dgr is applied for transforming u“ ()
into uP (i). If several rules of ties exist, one of them is randomly determined in the
same way as hypothesis 3 shown in Table 1. The PCH expands and generalizes
three cases for u® (i) (Table 1) while considering human decision making pro-
cesses. Here, the observer shown in Fig. 1 records u(i) = (u® (i), u”()). Following
this, NoiseC and NoiseD could be introduced to adapt the model for real-world
datasets. Here, NoiseC adjusts the value of u®(i) = (ve) (@), o veqen (i) or

makes vc(j)(i) a missing value, whereas NoiseD adjusts the value of u® (7).
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Table 2. Examples of prespecified rules in the rule box.

R(d,k)|sCP(d, k)|D = d|(dpl, rdct)
R(1,1)[ 110010 [D=1| (0,0)
R(1,2)| 001101

R(2,1)| 220020 [D=2| (L,0)
R(2,2)| 022202

R(3,1)| 330030 [D=3| (0,1)
R(3,2)| 003300

R(4,1)| 440040 (D=4 (1,1)
R(4,2)| 040404

R(5,1)| 550050 [D =5 (L,2)
R(5,2)| 050500

On generating u® (i) = (ve()(i), ..., vo( o) (i) using random numbers and
transforming it into u” (i) using the model shown in Fig. 1, including PCH, we
obtain U = {u(i) = (u®(3),uP(i))|i = 1,..,N = |U|} and subsequently apply
it to any rule induction method to investigate the extent to which the method
induces the prespecified rules. As such, the model (Fig. 1) can also be used as a
verification system for the applied rule induction method.

3 Simulation Experiment applying the Previous STRIM
to the PCH dataset and the Attendant Problems

We implemented the DG process with the PCH and the verification process to
examine the ability of the applied method as follows:

(1) Various types of rules were specified (e.g., those shown in Table 2) and set
in the rule box (Fig. 1), where |C| = 6, V, = {1,2,...,5} (a = C(j)(j =
1,..,]C|),a = D), sCP(1,1) = 110010 denotes sCP(1,1) = (C(1) = 1) A
(C(2) = 1) A (C(5) = 1), before we labeled a rule of the rule length 3
(RL = 3) with three conditions and the column of (dpl, rdct) denoting the
number of points of duplication and reduct, respectively. For example, two
rules for D = 5 have one duplication point at C(2) = 5 and two reduct
points at C(3) and C(6), which have nothing to do with those rules.

(2) Next, vo;) (i) (j =1,...,|C] = 6) was generated with a uniform distribution
and u% (i) = (veq) (i), ..., voe (1) (i =1,..., N =10,000) was formed.

(3) Then, u®(i) was transformed into u” (i) using the prespecified rules listed
in Table 2 and the PCH, without generating NoiseC and NoiseD for a simple
experiment. Here, the Dgr was estimated using the sum of the number of
the conditions satisfied for each rule.

Table 3 shows various examples of (u®(i), R(d,k)) = Dgr, which includes
(u®(1) = 112233, R(1,1)) = 2, (u“(1) = 112233, R(1,2)) = 0, with R(1,1)
or R(2,2) with the largest Dgr randomly used. If the CCP had been used,
the rules with a larger RL would almost certainly not have been used. For
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Table 3. Examples of uc(z) and its Dgr by prespecified rules.

(i) \ R(d. k) R(1,1JR(1, 2JR(2, 1JR(2, 2|R(3, 1R (3, 2]R(4, 1|R(4, 2R (5, 1]R(5, 2):
u-t 11001(000110122002(02220233003000330044004(04040455005(0050500

)
u(1) = 112233] 2 0 0 2 1 0 0 0 0 0
u®(2) = 334455 0 0 0 0 2 0 0 1 1 1
u€(3) = 123451 1 1 1 1 0 1 0 1 1 0
u® (4) =245512| 1 0 1 1 0 0 1 1 0 1

example, if RL = 4, the probability of using such rules would be approximately
(1/5)*(4/5)? = 1.02E — 3. However, human beings will generally use one of the
rules that better match their own rules. When RL = 1 is the largest Dgr, one
among the large number of rules (u(3) or u“(4) in Table 3) will be used. As
such, the PCH complicates the rule induction problem compared with the CCH.
The dataset generated on the basis of the above procedures will hereafter be
referred to as the PCH dataset.

After randomly sampling Ng = 5,000 data from the generated dataset and
forming a new dataset as the DT, we applied the previous STRIM (details in
[7,8]) to the PCH dataset. The previous method involves the basic idea that
the rule condition part CP = A;(C(j) = vj,) causes the bias at D = d in the
distribution f(n1,n2,...,ny;,|) of D = m, with this idea based on the follow-
ing consideration and principle: the simultaneous probability of (C, D) can be
denoted as P(C,D) = P(C)P(D|C), where P(D|C) = P(if C'then D). In the
special case for CP = \;(C(j) = v;,) and D = d,

P(D =d|CP = \(C(j) =v;,)) = P(if CP = \(C(j) = vj,) then D = d).

J J
(1)
Meanwhile, a C'P satisfying

P(D =d|CP) = P(D = d) (2)

cannot be a rule candidate.

To efficiently explore the C'P, the previous STRIM first executes a statistical
test specifying a null hypothesis Hy: D = d that is independent of CP = C(j)
corresponding to Eq. (2) (the alternative Hy: D = d is not independent of
CP = C(j)). If Hy is rejected, that is, H; is adopted, then CP = (C(j) = vj,.),
which is the dominant value for D = d applied corresponding to Eq. (1). If Hy
is not rejected, CP = C(j) is independent of D = d corresponding to Eq. (2)
and CP = C(j) is reducted. Table 4 shows the results of this procedure, which
is termed a reduct table (RT) [6]: RT = {rd(j,d) € Voli = 1,..,|C|,d =
1,...,|Vpl|}, where r denotes “reduct.” As the table shows, C(j) = v, = rd(j,d)
exhibits a strong connection with D = d, and the if-then rule for D = d can
thus be constructed using a combination of both. For example, with D = 2,
C(j) =2=rd(4,2) (j =1,...,6), which is in line with the data shown in Table
2.
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Table 4. Reduct table for the DT generated based on the rules in Table 2 and the
PCH: “r” means reduct.
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Table 5 shows representative results for the 41 rule candidates constructed
through the combination of RL = 1,2 and 3 for D = 2 in descending order
of z-value [7,8]. For example, the first row, CndCP(2,1), of the table denotes
that the condition part of the induced rule candidate is (C(2) = 2). Mean-
while, the frequency distribution of D: f = (nq,...,n5) satisfying the condition
is (238, 1,346, 150,176, 100), which suggests that the frequency exhibits a large
bias of ng—s = 1,346, and thus, D = 2 presents the decision part for the rule
candidate. The distribution of z = m% obeys the standard normal
distribution under the null hypothesis Hy: CndCP is not a rule candidate (the
alternative hypothesis Hy: CndCP is a rule candidate) and the testing condition
[9], npg > 5 and n(1 — pg) > 5, where n :Zilzl Nm. The p-value correspond-
ing to the z-value is the index supporting Hy, with the accuracy and coverage
also shown in Table 5. All the rule candidates in Table 5 exhibit partial rules of
R(2,1) or R(2,2) prespecified in Table 2 or partially straddling rules between
the two (e.g., CndCP(2,21) and CndCP(2,22)).

The previous STRIM arranges the candidates using the p-values and the in-
clusion relationships among them. For example, CndCP(2,1) includes CndCP(2, 2)
as a special case, and its p-value is less than that of CndCP(2,2), whereas
the same applies to CndCP(2,3) and so on. Thus, CndCP(2,1) can repre-
sent CndCP(2,k) (k= 2,3,...,40). Applying the same to the rest, the previous
STRIM, which was developed using the CCH dataset, induced the final results
shown in Table 6. The previous STRIM induces the partial and/or straddle
rules of the prespecified rules, as shown in Tables 5 and 6, which is natural since
the PCH allows for prespecified rules to behave as their partial and/or straddle
rules. However, the previous STRIM cannot effectively arrange these rules and
subsequently induce original ones.

4 Improved STRIM Algorithm for the PCH Dataset

As noted above, the previous STRIM was based on Egs. (1) and (2), and we
used the bias in the distribution f(ni,nse,...,ny, ) of D for detecting Eq. (2) and
experimentally studied its rule induction procedures and the attendant prob-
lems. Following this, we reviewed the principles as P(CP,D = d) = P(D =
d)P(CP|D = d) and the process of inducing the rules corresponding to Egs. (1)
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Table 5. Representative rule candidates for D = 2 induced by the previous STRIM

for the PCH dataset.

CndCP(d, k) |C(1)..C(6)|D| p-value(z) |Accuracy|Coverage| f = (ni,n2,...,ns)
CndCP(2,1)| 020000 |2 0.00(41.2) 0.670 0.509 [(238,1346,150,176,100)
CndCP(2,2)| 022000 |2[6.11E-211(31.0)] 0.910 | 0.153 (16,406,2,16,6)
CndCP(2,3)| 220000 |2[3.17E-192(29.6)| 0.915 | 0.138 (16,366,6,12,0)
CndCP(2,4) | 020002 |2|7.08E-191(29.4)| 0.940 0.131 (8,346,10,2,2)
CndCP(2,5)| 020200 |2|5.80E-187(29.1)| 0.890 | 0.141 (20,374,8,12,6)
CndCP(2,6) | 200020 |2|1.97E-170(27.8)| 0.883 0.131 (20,346,6,8,12)
CndCP(2,7)| 020020 |2[4.25E-169(27.7)| 0.902 0.125 (18,330,6,12,0)
CndCP(2,8)| 000202 |2[1.34E-160(27.0)| 0.837 | 0.136 | (16,360,18,14,22)
CndCP(2,9) | 002200 |2(3.57E-146(25.7)| 0.833 0.125 (20,330,16,16,14)
CndCP(2,10)| 002002 |2|1.5E-126(23.9) | 0.814 0.113 (14,298,20,20,14)
CndCP(2,20)| 002020 |2|1.25E-62(16.7)| 0.648 0.089 (38,236,24,40,26)
CndCP(2,21)| 220002 |2|7.46E-58(16.0) | 0.979 0.036 (2,94,0,0,0)
CndCP(2,22)| 200022 |2|1.72E-57(15.9) | 1.000 | 0.034 (0,90,0,0,0)
CndCP(2,23) 020202 |2|1.72E-57(15.9) | 1.000 | 0.034 (0,90,0,0,0)
CndCP(2,33)| 002220 |2|4.05E-42(13.5) | 0.889 | 0.030 (4,80,2,2,2)
CndCP(2,34)] 220200 |2|1.01E-41(13.5)| 1.000 | 0.024 (0,64,0,0,0)
CndCP(2,35)| 220020 |2]1.01E-41(13.5)| 1.000 | 0.024 (0,64,0,0,0)
CndCP(2,40)| 020220 |2|1.55E-36(12.6)| 0.939 | 0.023 (4,62,0,0,0)
CndCP(2,41)| 202002 |2|3.37TE-24(10.1) | 0.813 0.020 (0,52,4,4,4)

and (2) as follows:

P(CP|D = d) = P(if D = disgiven, the causeis CP).

Meanwhile, a C'P satisfying

P(CP|D = d) = P(CP)

3)

(4)

cannot be a rule candidate. Equation (3) indicates the process for exploring the
cause C'P from the result D = d (see Fig. 1), with this process not using U
to explore the CP but only U(d) = {u(i)|u”=%(i)}. In the same way as Egs.
(1) and (2), the CP in Eq. (3) will be constructed by the elements C(j) = vj,

Table 6. Final results for D = 2 induced by the previous STRIM for the PCH dataset.

CP(d,k)|C(1)...C(6)|D| p-value(z) |Accuracy|Coverage| [ = (ni,ns,...,ns)
CP(2,1)| 020000 |2 0.00(41.2) 0.670 0.509 [(238,1346,150,176,100)
CP(2,2)| 200020 |2]|1.97E-170(27.8)| 0.883 0.131 (20,346,6,8,12)
CP(2,3)| 000202 |2|1.34E-160(27.0)| 0.837 | 0.136 | (16,360,18,14,22)
CP(2,4)| 002200 |2]3.57E-146(25.7)| 0.833 0.125 (20,330,16,16,14)
CP(2,5)| 002002 |2|1.50E-126(23.9)| 0.814 0.113 (14,298,20,20,14)
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Table 7. Examples of CTT(D = 2) for the PCH dataset in Table 5 (“-” denotes
C(j) # rd(j,d), |U(d = 2)| = 1,323, p0 = 1.0E — 5).

Com O NN 0o frea (. dus ) i | p-vatue |frea.(o0)
Cmb(l) | 22--- 82 0.0171 [3.75E-23] 45
Cmb(2) -2-2-- 75 0.0168 1.14E-19 45
Cmb(3) -2--2- 72 0.0163 1.04E-18 44
Cmb(4) 22---- 69 0.0159 1.51E-17 43
Cmb(5) 2---2- 64 0.0155 1.98E-15 42
Cmb(6)  |---2-2 61 0.0163 |5.37E-13| 44
Crub(7) —-2--2 57 0.0166 [8.51E-11| 44
Cmb(8) -2---2 50 0.0162 3.13E-08 44
Cmb(9) --22-- 51 0.0172 7.41E-08 45
Cmb(10) ---22- 26 0.0163 1.45E-01 44
Cmb(11) 2--2-- 18 0.0160 7.11E-01 43
Cmb(12) ----22 17 0.0158 |7.70E-01 43
Cmb(13) 2-2--- 14 0.0163 9.45E-01 44
Cmb(14) 2----2 13 0.0155 9.47E-01 42
Cmb(15) --2-2- 12 0.0167 |9.86E-01 44

(j =1,...,]C|), which are not independent of D = d already obtained using Eq.
(2), as shown in Table 4. Conversely, the C(j) = v;, = rd(j,d) shown in Table
4 can be recognized as a set of partial rules of RL = 1.

After determining the partial rules of RL =1 for D = d, partial rule candi-
dates for RL = 2, Cmb(k) can be constructed by the combination of partial rules
of RL =1 as follows: Cmb(k) = (C(j1) = rd(j1,d)) A (C(j2) = rd(j2,d)) A Q.
Here, Q = /\‘j'czll,jyéjl,jQ,jlyéjQ(C(j) # rd(j,d)) is necessary not to make a par-
tial rule of more than RL = 3. Whether or not Cmb(k) is a partial rule for
RL = 2 can be determined via statistical testing, specifying the null hypothesis,
Hy: Cmb(k) is not a partial rule for RL = 2 (the alternative Hi: Cmb(k) is a
partial rule for RL = 2), and using U(d). Table 7 shows the test results with the
combination test table for D = d = 2 (CTT(d = 2)) in ascending order of the
corresponding p-values. The number of patterns is |¢|Cy = 15, whereas (d, ji, jo)
denotes the pattern of Cmb(k); freq.(d, ji,j2) is the outcome frequency of the
pattern among |U(d = 2)|, whereas the p-value of the freq. (d, j1, j2) is calculated
using the probability P(d, j1,j2) under Hy; and freq.(p0) is a reference of the
frequency corresponding to p-value= p0. In reality, if freq.(d, j1,j2) > freg.(p0),
the p-value of Cmb(k) < p0.

As Table 7 shows, there was a large discrepancy in p-value between C'mb(9)
andC'mb(10), meaning Hy of Cmb(k) (k = 1,...,9) should be rejected, that is, it
should be determined to be a partial rule for RL = 2. Meanwhile, Hy of C'mb(k)
(k = 10,...,15) cannot be rejected, that is, it should not be regarded to be a
partial rule for RL = 2. The test results in Table 7 fall in line with R(2,1)
and R(2,2). Specifically, Cmb(k) (k = 10, ...,15) is a straddled rule between two
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Table 8. Example of adjacency matrix for Table 7.

- 1C(1) C(2) C(3) C(4) C(5) C(6)
chlo 1 0 o0 1 o0
cl1 o 1 1 1 1
c@3l o 1 0o 1 o0 1
colo 1 1 0o o 1
cHl 1 1 0 0o o0 o0
celo 1 1 1 0 o0

rules. For example, Cmb(10) can be made of like u(3) or u®(4) in Table 3 by
randomly determining R(2,1) or R(2,2).

Similarly, the rules of more than RL = 2 can be constructed by combining
them with more rules of RL = 1. Nevertheless, it is difficult to statistically
determine whether or not they are the partial rules since the probability of such
partial rules is extremely low (see the probability of these with RL = 4 in section
3) and sufficient outcomes for testing cannot be obtained. Now, we can examine
the relationships of the rules of RL = 2 in graph theory. Table 8 shows the
adjacency matrix derived from Table 7. Here, the element (1,2) = 1 denotes the
connection between C(1) and C(2) corresponding to C'mb(4) in Table 7 and the
element (1,3) = 0 the nonconnection between C(1) and C(3) corresponding to
C'mb(13). This matrix is symmetrical, with the diagonal set to 0.

The graph expression of Table 8 is shown in Fig. 2, where C(1), for example,
is denoted by C1 because of the software used [10]. The software could also
induce the maximum cliques [11] in the graph as follows:

[[1]] + 3/6 vertices, named, from f88b50c: [1] C1 C2 C5
[[2]] + 4/6 vertices, named, from £88b50c: [1] C2 C3 C6 C4

The two induced cliques correspond to R(2,1) and R(2,2), respectively, since
R(2,1) with RL = 3 have three partial rules of RL =2 (3C3 = 3), R(2,2) with
RL = 4 also having six (4C3 = 6), and both groups of rules with RL = 2 forming
their own respective clique, which was confirmed by the results shown in Fig. 2.

We labeled the aforementioned if-then rule induction procedure as the Bayesian
STRIM after inferring the cause C P from the observed results U(d) and arrang-
ing the procedure, as shown in Fig. 3.

Let us apply the Bayesian STRIM to U(D = 4) (Stepl) generated by R(4,1)
and/or R(4,2), which have both a duplicate point and a reduct point. In this
case, RT = {rd(j,d =4)|j =1, ...,|C|,d = 4)} has already been obtained (Table
4 (Step 2)). In Step3, K =6 — 1, xCy = 10 and CTT(d) was created, as shown
in Table 9, which indicated that Hy of Cmb(k) (k = 1, ...,6) should be rejected
but that of Cmb(k) (k = 7,...,10) should not, given the large discrepancy in
p-value between Cmb(6) and Cmb(7). Consequently, the adjacency matrix was
created, as shown in Table 10 (Step 4). Meanwhile, the graph of the adjacency
matrix was created (Fig. 4), and the cliques were obtained as follows:

[[1]] + 1/6 vertex, named, from f633afi: [1] C3
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©

Fig. 2. Example of graph expression for the adjacency matrix presented in Table 8.

Stepl|Derive U(d) = {u(i)[u®=%{)} (d = 1,..,Mp) from U = {u(i) =
W€ @),uP@)]i=1,..,N =|U[}.

Step2|Create RT = {rd(j,d)|j =1,...,|C|,d=1,...,Mp)}, using U(d).
Step3|Create Cmb(k) (kK = 1,..., kC2, where K is the sum of the number of
nonreducted C(j) with D = d). Statistically evaluate whether Cmb(k) is a
partial rule of RL = 2, and create CTT(d).

Step4|Create the adjacency matrix, {(C(j1),C(j2))|j1,J2 = 1,...,|C|}, using the
statistical test result for Cmb(k) in CTT(d).

Stepb|Create the graph of the adjacency matrix, induce the maximum cliques,
and infer the if-then rule of CP for D = d.

Step6|Repeat Stepl-5 from d =1 to Mp.

Fig. 3. Example of procedures for the Bayesian STRIM.

[[2]] + 3/6 vertices, named, from f633afil: [1] C1 C2 C5
[[3]] + 3/6 vertices, named, from f633afi: [1] C2 C4 C6

Although [[1]] suggests that C(3) is a rule of RL = 1, in reality, it is not, since
C(3) had already been reducted for D = 4 (Table 4). If this was not the case,
C(3) would be a rule of RL = 1, that is, the Bayesian STRIM can naturally
induce a rule of RL = 1. Meanwhile, [[2]] and [[3]] suggest R(4,1) and R(4,2),
respectively, meaning the Bayesian STRIM effectively induced the prespecified
rule for D = 4 (Step5). The validity of the Bayesian STRIM for D = d = 1,3
and 5 was also confirmed similarly as with D = d = 2 and 4 using the procedures
shown in Fig. 3.

To examine the robustness of the Bayesian STRIM as a rule induction method,
the following experiment was conducted:

Step 1) The data were resampled by Np from the dataset of N = 10,000
generated in section 3 via a bootstrap method, and a new DT was formed.

Step 2) The Bayesian STRIM was applied to the new DT and whether or not
it induced just enough prespecified rules for every D = d was investigated.
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Table 9. Example of CTT(D = 4) for the PCH dataset presented in Table 5 (“-”
denotes C(j) # rd(j,d), [U(d = 4)| = 1,013).

Com O NN 0o frea (. dus ) i | p-vatue |frea.(o0)
Cmb(1) 4---4- 86 0.0208  |6.54E-28 43
Cmb(2)  |-4--4- 82 0.0196 |5.42E-27| 41
Cmb(3) -4---4 84 0.0217 1.92E-25 44
Cmb(4) ---4-4 76 0.0208 1.01E-21 43
Cmb(5) -4-4-- 73 0.0196 2.25E-21 41
Cmb(6) Adoo-- 76 0.0217 |1.17E-20| 44
Cmb(7) 4--4-- 29 0.0208  |3.63E-02 43
Cmb(8) ---44- 16 0.0188 7.11E-01 40
Cmb(9)  |4----4 17 0.0230  [8.91E-01| 46
Cmb(10) ----414 14 0.0208 9.32E-01 43

Table 10. Example of adjacency matrix for Table 9.

( (
1 0
0 1 1
0 0
1 0 1
1 0
1

C) C@) CB3) C@) C(B) C6)
1

0
0
0
0
0
0

1 0
1
0 0
0
0 0
0 0

0
1
0
0
1
0

Step 3) Steps 1) and 2) were repeated N, = 100 times.

Table 11 shows the results for step 3) arranged in terms of the rule induction
rate (Ir). Here, p-value0 was uniformly used for a threshold value of rejecting
Hy of Cmb(k) against all D = d and creating the adjacency matrix as in Step
4, whereas with the examples shown in Tables 7 and 9, a large discrepancy in p-
value was used. For example, in the row denoting Np=>5,000, p-value0= 1.0E —5,
and Ir(D = 2) = 0.95, whereas Ir(D = 4) = 0.95, which was in line with the
conditions presented in Tables 7 and 9. The five induction failures at D = 2 were
caused by the fact that the p-value of Cmb(9) exceeded p-value0 and the Hy of
Cmb(9) was not rejected. By contrast, the p-value of Cmb(7) (Table 9) was less
than p-value0 and the Hy was rejected five times. However, as Table 11 shows,
the Bayesian STRIM had the capacity to robustly induce prespecified rules by
appropriately setting the number for N and using the individual p-value0 for
every D = d.

5 Consideration of Differences between Bayesian STRIM
and Other Methods Exploring for Causality

In this section, we examine the relationship between two Bayesian methods in
terms of causal inference.
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Fig. 4. Example of graph expression for adjacency matrix in Table 10.

Table 11. Examples of rule induction rates obtained via the bootstrap method.

Ng |p-valueO|Ir(D = 1) Ir(D = 2) Ir(D = 3) Ir(D =4) Ir(D =5)
4000 1.0E-04 0.96 0.88 0.96 0.93 0.96
’ 1.0E-05 0.88 0.65 0.99 1.00 1.00
1.0E-04 0.96 0.97 0.99 0.87 0.98
5,000| 1.0E-05 0.98 0.95 1.00 0.95 1.00
1.0E-06 0.95 0.69 1.00 1.00 1.00
6.000 1.0E-05 1.00 1.00 0.99 0.95 0.99
’ 1.0E-06 1.00 0.93 1.00 1.00 1.00
7000 1.0E-05 1.00 1.00 1.00 0.95 1.00
’ 1.0E-06 1.00 1.00 1.00 1.00 1.00
8.000 1.0E-05 1.00 1.00 0.98 0.93 1.00
’ 1.0E-06 1.00 1.00 1.00 0.99 1.00

5.1 Relationship with MAP estimate

When U(d) is given, the probability that the cause is the C'P is given using
Bayes’ theorem as follows:

|U(d)NU(CP)|
P(D =d|CP)P(CP o
perip = = I - it
_W@NUICP) _ (o erage
= ) C ge(CP), ()

where U(CP) = {u(i)|u® (i) satis fies the CP}. Equation (5) can be used for the
MAP estimate [12] regarding the P(CP) of its prior probability. If applied to the
results shown in Table 5, CndCP(2,1) with the maximum coverage will be cho-
sen. However, CndCP(2,1) is the partial rule with RL =1 of R(2,1) or R(2,2).
The PCH generates the dataset generated from various types of partial rules,
as shown in section 3. Meanwhile, the Bayesian STRIM estimates the original
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rules after inducing the partial rules via a statistical test and constructing their
connections according to their maximum cliques.

Besides Eq. (5), on applying Bayes theory to Eq. (1) on which the previous
STRIM is based, the following is derived:

P(CPID=d)P(D=d) TR
P(D =d|CP) = PP -
54
|U(d) N U(CP)]
= ———— = Accuracy(CP), 6
U(CP)] (cp) (6)

which leads to selecting CndCP(2,22), CndCP(2,23), and so on (Table 5) as
the rules. However, various problems related to selecting the rule candidates
by referring to their coverage and/or accuracy have been reported in previous
studies [5, 8.

5.2 Relationship with the BN [13]

Each attribute in a given DT is a random variable and its value or data are an
outcome of the variable. The BN recognizes these random variables as vertexes
of a graph, connects two of the vertexes with a directed acyclic edge to form
an acyclic graph, and potentially presents a causal model. Once the dataset of
the random variables is given, the BN identifies the causal model as a stochas-
tic network using the dataset and can provide useful information regarding the
variables by simulating the network under various conditions. The PC algorithm
[13], which is regarded as one method for identification, first induces an undi-
rected graph associated with the directed graph and then transforms the former
into the latter using orientation rules (see [13] for details).

The input-output relationship of STRIM was presented in Fig. 1, whereas
the relationship between random variables (e.g., in the case of R(2,1) and
R(2,2)) is shown in Fig. 5, where the rules were depicted in terms of a graph.
Each edge of the condition part of the rule is given in a subset of the vertex,
{C(1),C(2),C(5)}, {C(2),C(3),C(4),C(6)}, which are known as hyperedges,
whereas the condition part is given in a hypergraph [14], H = (C, F'), where
C= {C(])‘] =1,.., 6} and F' = {{C(l)’ 0(2)7 C(5>}” {0(2)7 0(3), 0(4)7 C(6>}’}
On including the BN, most of the graphs connect two vertexes as an edge.
However, the if-then rule requires the hypergraph to express itself in the graph
expanding the edge into the hyper. Furthermore, only Fig. 5 does not express
the PCH. Accordingly, it would appear to be difficult to use the BN to simulate
the dataset generated by the if-then rule with PCH, except in the case of special
rules with RL = 1,such as if C'(1) = d then D = d.

6 Conclusion

In this study, the previous if-then rule decision model, that is, the previous DG
model applying the CCH was reviewed and improved to form the new DG model
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(UED, €6 €D EG), ur:<4> uE®
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_ L), CORL@ACB), C (W), C6)  :

Fig. 5. Example of graph expression for R(2,1) and R(2,2).

applying the PCH. Specifically, the previous DG model involved the problem
that it did not function appropriately in the case where the RL becomes longer
because of the strict rules, whereas human beings tend to use such rules, making
the second-best decision through referring to them. With this in mind, the new
DG model incorporating the PCH was developed to ensure that it was closer
to real-world datasets. The PCH dataset generated after prespecifying various
types of if-then rules in the improved DG model was applied to the previous
STRIM developed under the CCH dataset to examine its rule induction ability.
Here, the principle of the rule induction performed by the previous STRIM is
based on a statistical test, with specifying Hy: P(D = d|CP) = P(D = d) and
using U, and the CPs rejecting Hy was adopted as the rule candidates. Based
on the results, the following conclusions could be drawn:

1) The previous STRIM induced a large number of partial and/or straddle rule
candidates with RL = 1,2, ... of the prespecified rules (see Table 5).

2) The method did not involve any appropriate strategy for arranging these
rules in view of inducing original rules (see Table 6).

Then, this paper developed the previous STRIM into a new method ap-
plicable to PCH datasets and its validity of the new method was confirmed.
Specifically, this paper reviewed the experimental results 1) and 2), studied the
rule induction strategy on the basis of Hy: P(CP|D = d) = P(CP) using U(d),
induced partial rules of C'Ps rejecting Hy every RL = 1 and 2, assembled these
C Ps into the adjacency matrix and estimated the original rules using the max-
imum cliques in the graph derived from the matrix. The rule induction method
was labeled the Bayesian STRIM after inferring the cause C'P of the condition
part from the effect U(d) of the decision part of the if-then rule, and its proce-
dure was arranged and summarized using illustrations of typical examples (Fig.
3). Furthermore, the robustness of the Bayesian STRIM was confirmed via a
bootstrap method.

The relationships with MAP estimation and the BN were also studied in
terms of the causal inference, specifically in relation to the if-then rule induction
problem. Here, it was found that these methods are not generally applicable to
the rule induction problem.

In future studies, we will focus on the following points:



Application of Bayesian STRIM 15

(1) At present, the model assumes that C(j) (j = 1,...,|C|) exhibits the same

weight of importance w(j) = 1.0; however, both the actual w(j) and the
PCH must be incorporated in the model to ensure it is closer to real-world
datasets.

(2) The Bayesian STRIM must be applied to real-world datasets in view of

confirming its usefulness.
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Abstract. Crop yield prediction is a natural development of sustainable
agriculture, which helps produce a rich amount of good quality food with-
out depleting and polluting environmental resources. Crop yield produc-
tion has many contributing environmental factors that can predict the
wellness of crop production over a growing season. In this preliminary
experiment, we identify the potential of machine learning algorithms in
the agriculture domain with an increased amount of relevant data avail-
able. We mainly utilised four different sources of agriculture data, i.e.,
annual grants of the individual farmers, the total quantity of grain de-
livered by each farmer, the geographical location of the registered farms,
and the weather information in the growing season. After preprocessing
and filtering the utilised data corpus, we train a Deep Neural Network
model (DNN) to predict the relative crop yield (i.e., in kg/10000 m?) for
each farmer’s farm location. We identify that the trained DNN model
could predict crop yield with an average error of 930 kg/10000 m?, or
24% of the average crop yield per /10000 m? for the utilised data corpus
(i-e., 3828 kg). We implement the same model for further experiments in
this research study. We compare the crop yields providing different grain
types and substituting the weather information for one year with another
to evaluate its impact on overall crop yield prediction. In conclusion, the
reusable crop yield production dataset and the proposed novel model
could meet the actual requirements for the prediction targets in this
paper, providing further valuable insights for the research community.

Keywords: crop yield prediction - norwegian agriculture - deep learning
- artificial neural network - deep neural networkis
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Introduction

In Norway, a sustainable crop yield production highly depends on agro-climatic
conditions, infrastructural developments in agriculture, annual grants for indi-
vidual farmer, the persistence of rainfall, and the weather information [1]. It is
becoming a significant challenge for farmers to produce an increased quantity
and better quality of different grain types by increasing the overall global pop-
ulation [2]. In this paper, we focus on exploring deep learning models to predict
crop yield production in Norway. It is our belief that the farmers could get the
valuable insights to know the production improvements in particular grain type
and quantity of crops in growing seasons based on geographical location and
other environmental factors. In addition, it will improve food security and aid
decision-making at various administrative levels.

In the past decade, we observed a steady decline in both the count of active
grain farmers and the total landmass area used for grain farming [3]. In addi-
tion, we observed the increased work efficiency of the grain farmers at the same
time, that leads to a total grain production at the national level. In 2019, the
Norwegian farmers cooperators and Felleskjgpet (FK) agriculture organisation
received a large investment into a new agriculture project. This project aims to
increase the quantity of the crop yield and overall efficiency in Norwegian crop
yield production system. In result, they combine the traditional farming meth-
ods with new digital technologies such as machine learning or deep learning for
data harvesting in the growing season [4]. According to a survey on Norwegian
farmers for the oats grain production, it has been investigated that the crop
yields vary with several environmental factors such as weather, current and pre-
vious crop types, and type or quantity of fertiliser used for the particular grain
[5] [6]. It is our belief that the early predictions for these environmental fac-
tors’ interaction and effects may provide better understanding to the farmers
to improve crop yield production. Although, the attempts to predict crop yield
production with Artificial Neural Networks (ANN) have been made before [7],
data for Norwegian agriculture has recently improved in terms of availability
and granularity, e.g., grant applications [8]. With this in mind, we have gath-
ered and pre-processed relevant publicly available agriculture data and trained
an artificial neural network model to predict the crop yield of Norwegian grain
farmers for this preliminary research study.

The major motivation of this preliminary study is to predict crop yield pro-
duction across Norway. The primary purpose is to observe what data sources
are publicly available to conduct this research study and how this data corpus
can be utilised and evaluated using machine learning algorithms, such as neural
networks. We carefully explored the collected data, such as weather information
and geographical locations of harvested area of farms. Based on this motivation,
we identify two major goals for this study i.e., (i) predicting the quantity of
the crop yield production delivered by each farmer based on the geographical
area allocated along with weather information, and (ii) build and train neural
networks to predict the crop yield for farms in Norway and evaluate the overall
performance of each farmer in the growing season.
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1.1 State-of-the-Art to Crop Yield Prediction

Based on the goals identified earlier in this section, the authors investigated
that the neural networks have emerged as the current state-of-the-art for crop
yield prediction using weather and geographical data [9]. As can be observed in
the study by Lieu et al. in 1999 [9], where the researchers used artificial neural
networks for crop yield prediction and found that the ANNs can capture the
nonlinear function for crop yields. They used a simple artificial neural network
with three fully connected layers to predict corn yield production using soil data,
weather data, and management data. The weather data included rainfall for each
month during the season, the previous year, and the calculated GDD (Growing-
Degree-Day) for the season. The management data included genetic data and
fertiliser, planting density, and rotation factors in field. In total, the network
was fed with limited i.e. 15 input variables and 20 units in the hidden layer.
Consequently, ANN model predicted the yield of 60 validation samples with an
RMS error of around 20% *.

Crtomir et al. in 2012 [10], used ANN along with image analysis for Apple
yield prediction by looking at the predicted number of fruits at four or five dif-
ferent stages of growth. By looking at maize production in east-central Indiana,
USA, using data from 1901 to 1996, O’Neal et al. [11] utilised weather data and
implemented an ANN and regression models to predict the maize yield with an
RMS error of 10.5% '. The researchers found that the maize yield production
is highly co-related with harvested season of the year and showed insignificant
coefficients with precipitation and air temperature dataset. Consequently, they
found neural networks outperformed the linear and quadratic regression mod-
els used on the precipitation and air temperature dataset. They found that the
neural network performed better using a max-min coding scheme (i.e., linear
scaling of input values between a maximum and minimum value) compared to
unary, binary, or logarithmic coding schemes. We implemented the findings from
[11] in our experiment and found less RMSE i.e. 24% of average crop yield per
/10000 m?, which we believe is better outcome for research community. In con-
clusion, this shows that deep learning can be effective for crop yield predictions,
given that enough crop yield statistics are available.

We present our contributions thus: (i) an accurate crop yield prediction us-
ing geographical locations and weather information data; (ii) fusing and filtering
multiple sources of data to further improve the crop yield prediction accuracy;
(iii) predicting a particular grain type with better yield production among four
different grain types; and (iv) identifying the effects of weather information on
crop yield prediction. In this section, we presented the overview of this research
study and motivated the idea behind this study. In addition, we define the cur-
rent state-of-the-art approaches to the crop yield predictions using neural net-
work models. In Section 2, we report on the history of Norwegian agriculture and

! Tt is difficult to determine exactly how different researchers have calculated RMS as
a percentage or if they are using the same formula. The values presented here are
the values the researchers have used themselves.
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grain production. We also report the relevant studies which observed the envi-
ronmental factors effecting crop yield production and agricultural improvements
overall. Section 3 presents the methodology of this research study. Section 4
showcases the experiments to predict crop yield production and summarises the
results. We then assess the obtained results against our earlier mentioned iden-
tified goals in this section. We conclude this research study and discuss further
directions for future work in Section 5.

2 Related Work

2.1 Norwegian Agriculture

Norwegian agriculture has traditionally been family farming [14]. With the sup-
port of society and politicians, the goal is to reach national self-sufficiency based
on the available natural resources. The government has designed the subsidy
rates to compensate for any disadvantages to keep agriculture active and prof-
itable. For example, land payments are differentiated by geography and type
of agricultural production [15]. Although Norwegian agriculture has comprised
smaller family farms spread out, there has been a decline in the number of farm
holdings by 50% in the last three decades. Simultaneously, there has been an
increase in the average size of farms, from 14.7 hectares in 1999 to 24.7 hectares
in 2018 [16]. The most produced categories of food throughout the country in-
clude milk and milk products, meat, poultry, eggs, potatoes, and grains [14]. The
readers can have the access to the distribution of the developed grain produc-
tion and geographical area (in acres) used in Norway for agriculture from 2003
to 2019 discussed in [17].

2.2 Norwegian Grain Production

The Norwegian topography consists mainly of mountain masses, and as a result,
only 3% of the total landmass is cultivated land (excluding Svalbard and Jan
Mayen). Because of differences in climatic conditions, a minor part of this cul-
tivated land can grow cereal for human consumption [16]. As per the research,
Norway’s eastern and southeastern part is best suited to produce food-grade
grains. There are mainly four types of grain produced in Norway: wheat, barley,
oat, and rye (and rye-wheat). We found that barley is the most grown grain in
Norway because of the need for a shorter growing period [18]. Wheat requires a
longer growing season compared to barley. For example, winter wheat resumes
growing in the spring and is harvested in the summer. The result is the same
type of grain, but winter wheat may give higher yields as it will resume growing
earlier in the spring compared to spring wheat [19]. Oats thrive in cold and moist
climates, which makes them well suited for cultivation in Norway. The vast ma-
jority, i.e., over 90% of oats grown, are used for animal feed, and 2% are used for
human consumption [5]. Rye is the least grown grain in Norway, covering 2% of
the total area used for grains [20]. Rye thrives in higher altitudes, but is mostly
only grown in the east and southeastern parts of the country [20] [21].
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2.3 Plant Growth Factors

Plant growth and wellness are affected by elements from its surroundings. Ac-
cording to Woodward F. Ian [22] and Oregon State University [23], the five
main environmental factors affecting plant growth are light, temperature, water,
nutrition, and crop rotation.

— Light: Light is a component of photosynthesis and is essential for overall
plant growth. In Norwegian crops, the duration of light is particularly rele-
vant; according to Assveen and Abrahamsen, the duration of light in a day
(day length) is more influential than temperature as growth factors [24].

— Temperature: Temperature affects growth in several ways. A rise in tem-
perature triggers the germination process, so the temperature controls when
the seedlings initially sprout [25]. The temperature also affects when crops
such as winter wheat break dormancy to resume the growth in spring [26].
Crops will have different requirements for measuring the average degrees are
needed before it is ripe for harvest [22] [23].

— Water: Together with light, water is a primary component of photosynthe-
sis, and consequently, an essential factor for growth. For crops, water can
come in the form of direct precipitation, humidity, or irrigation [22] [23].

— Nutrition: Plants need in total 17 essential chemical elements to grow.
Three of the required components are found in air and water (carbon, hy-
drogen, and oxygen), while the soil must provide the rest [27]. Farmers can
fertilise the soil, which adds materials containing nutrients to make these
available to the plants. The roots absorb approximately 98% of the nutrients
through soil water [28]. If the plant is under stress by extreme temperatures,
drought, or low light, this can lower the plants’ ability to absorb nutrients
efficiently [29].

— Crop rotation: Crop rotation is the process of rotating alternative crops
that are growing in a field from season to season. It builds an opportunity
to create diversity on a field [30]. Bullock in 1992, shows an example of a 2-
year crop rotation between maize and soybean, which resulted in 5% to 20%
more maize yields [31]. Crop rotations also help in breaking disease cycles,
and including plants in the legume family in a rotation. In result, it will help
pulling the nitrogen from the air and lessen the need to fertilise nitrogen in
the field [30].

Based on the environmental factors [22] [23], Engen et al. in 2021 [32] pre-
dicted a farm-scale crop yield production from multi-temporal agriculture data
such as Sentinel-2 satellite images, weather data, farm data, grain delivery data,
and cadastre-specific data. The researchers proposed a novel deep hybrid neural
network to train this multi-temporal data. They combined the features of con-
volutional layers and recurrent neural networks to predict farm-scale crop yield
production across Norway. In result, the proposed network could efficiently make
the target predictions with the mean absolute error of 76 kg/10000m?, which
outperformed the baseline approach reported in the research study.
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3 Research Methodology

With the understanding of Norwegian agriculture, grain production and plant
growth factors explained in Section 2, we present the research methodology for
this study (See Fig. 1). We explore the collection of multiple sources of data in
Section 3.1. We present the technique to filter the utilised data in Section 3.2. In
Section 3.3, we show the techniques to prepare the data such as normalisation
and de-normalisation techniques before feeding the data for training the model.
We align the state-of-the-art deep learning model [11] with the preliminary ex-
perimentation of this study in Section 3.4.

Illi Data Collection Data Handling

Grant Applications Data Filtration
Grain Delivery Reports o Data Preperation Proposed Crop Yield Prediction

e Deep Learning Model 10000 m?
Weather Information P B (Kg/ )

Historical Data (4 Years)

ICE]

Fig. 1. Research methodology for this research study.

3.1 Data Collection

There is no readily available single dataset that can be downloaded and used for
machine learning in crop yield prediction in Norwegian agriculture. Therefore, a
large portion of this work has been collected from publicly available data sources
that can be used for crop yield prediction.

— Grant Applications and Grain Delivery Reports: The primary data
sources are the official public archives of farmer grant applications and grain
deliveries from the Norwegian Agriculture Agency. As Norwegian grain farm-
ers rely on subsidies, they must fill out yearly grant applications describing
the land used for crop cultivation. These are used to build a base dataset
that can integrate other data sources through each farmer’s unique organ-
isation number 2. From the Norwegian Agriculture Agency, three different
yearly reports serve as the base data for this research study. First, the grain
delivery reports that include how much grain of different types, i.e., barley,
oats, wheat, rye, and rye wheat, each farmer has sold in the last year. Sec-
ond, the agriculture production subsidies from farmers regarding the area of
cultivated land 3. Third, we get a detailed report that links farmers’ organi-

2 where all farmers are registered in the official registers (Brgnngysundregistrene),
giving them a unique organisation number

3 these areas provide the relative crop yield for each farm and crop type from the year
2017 to 2019 for crop yield prediction
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sation number to the used cadastral unit 4. We served these data as a basis
for precise geographic location [33].

— Geographical Locations: The address(es) for each organisation were gath-
ered from the Brgnngysund Register Centre’s Unit Register API. The ad-
dresses’ global coordinates were obtained by querying a Geocoding API
(accessible at https://www.geonorge.no/) from MapBox. These coordinates
were subsequently used to query a different MapBox API to retrieve the
elevation of each address.

— Weather Information: The weather is one of the main external factors
that is crucial for farming [34]. As shown by [35], temperature is highly
correlated to the eventual yield, and precipitation is relevant when there is no
irrigation used [36]. The Norwegian Meteorological Institute (MET Norway)
collects weather data across Norway and makes it publicly available through
the Frost API (https://frost.met.no/). In this study, the weather at each
farm was estimated using the readings from its nearest weather station [33].
As there are significantly more farms than weather stations, many farms
share the same weather data. In addition, we found there were 353 weather
stations with precipitation data and 288 with temperature data that could
affect the overall prediction accuracy. We split temperature measurements
into individual days, where a min, max, and arithmetic mean are stored. We
downloaded the accumulated precipitation from each weather station with
these measurements, resulting in one precipitation feature per day. In result,
this helps to speed up training and reduce overfitting.

3.2 Data Filtration

In this section, we explore the collected data corpus for getting meaningful in-
sights. The grain delivery dataset contains entries for each farmer per every
year. Together with the grant application dataset, the grain deliveries allow us
to look at each farmer’s yield compared to the total area of a cultivated field
(i.e., kg/10000m?) is harvested. Through experimentation, we found the quan-
tity of crop yield by different farmers closely depends on the farm’s size (total
area harvested). However, a few reports include negative yield, where crop yield
is almost nothing even after harvesting maximum of farm-land area.

We see most farmers manage a yield somewhere between 0 and 10 tonnes
per hectare (where 1 hectare = 10000m?), or over 20 tonnes per 10000 m? and
higher. According to SSB [3], the average Norwegian farmer produced between
3 and 5 tonnes per 10000m? each season from 1997 to 2012, across the four
major grain types. This average fits well with the majority of the samples in
our dataset, and, shows that the observed samples with very high yield could
be based on invalid or incomplete reports. Before using the data for training the
neural network, we filter the data by removing outliers based on the distance
from the mean yield. Because of the different grain types, the distributions are

4 where a cadastral unit is an area of land, as specified in the official Norwegian
cadastre (matrikkelen)
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different. Thus, this filtering is done separately for each grain type. Removing
data points over two standard deviations from the average yield results in a
distribution that closely resembles a normal distribution (See Fig. 2).

Farmers by yield and hectares Yield distribution (tonnes per hectare)

Grain type
= Barley
== Oats

=1 Wheat

2000 1750
1500

1500 1250
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Count
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Yield (tonnes)
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500

250

0 100 200 300
Hectare Yield (t/ha)

Fig. 2. Each farmers yield and yield distribution (per grain type), after filtering.

3.3 Data Preparation

All features are scaled or normalised before used as input to the neural network.
Min-max normalisation applied to most features, meaning the values are linearly
mapped to a value between 0 and 1, based on the maximum and minimum values
of that feature. To keep temperature values consistent across all the weather
features, we apply a pre-defined constant value for the minimum i.e., -30 degrees
and maximum i.e., 30 degrees normalisation limits, meaning that values in the
range [-30, 30] are linearly scaled to [0, 1] (See Equation 1). We use 0 and 10
mm as minimum and maximum values for precipitation, and for historical yield
data, we use 0 and 10000.

normalised = (value — minimum)/(mazimum — minimum) (1)

The normalised values make the neural network’s output difficult to interpret
compared to real-world yield numbers. In result, we sometimes de-normalise the
output values using the Equation 2.

value = output X (mazximum — minimum) + minimum (2)

3.4 Proposed Neural Network Model in Predicting Crop Yields

Based on the earlier mentioned state-of-the-art technique by O’Neal et al. [11],
ANNSs outperform regression models for maize yield prediction. This motivated
the authors to implement neural networks to predict crop yield production. In
this research, the model was created using TensorFlow and is a simple network
built up by dense layers. The network comprises one input layer, three hidden
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dense layers with dropout in-between, and a final output layer. The input layer
comprises all 762 features available, fed into the first hidden dense layer of 256
neurons. Next, a dropout layer with a rate of 0.1 to add random noise before
another hidden dense layer of 64 neurons, another dropout layer with a rate of
0.25, leading to the last hidden layer of 64 neurons. At last, there is an output
layer of one single neuron with linear activation, which outputs the predicted
value. We used sigmoid, tanh, and relu activation functions in the hidden layers,
where tanh proved to be the best for our experiment. In addition, we further
improved the results using Adam optimiser with a learning rate of 0.0001 and a
batch size of 512.

4 Experiments and Results

4.1 Predicting Total Crop Yield Production

In this initial experiment, we utilised weather data, historical yield, grants infor-
mation, and farm data (the size and type of crop harvested) in earlier described
neural network model. We split the utilised data in the ratio of 80:20 for training
and validation set. As can be seen in Fig. 3, we obtained a validation loss of 0.008
mean absolute error, which roughly translates to an average error of 18 tonnes
per each farmer. Both plots show the data ordered by yield, in increasing order.
This shows the median prediction, and a minimum and maximum for bins of 50
samples each.
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Fig. 3. Neural Network predictions compared with the actual crop yield on validation
data.

4.2 Predicting Crop Yield Production based on Harvested Area

It is our belief the one can understand the quality of crop yield from the better
measurement ratio between harvested area (i.e., 1 hec = 10000 m?) and quantity
of crop yield. Therefore, we set the target value to the yield per unit of harvested
area in the neural network. As can be observed from Fig. 4, we got the predicted
crop yields in increasing order per hectare as compared to the total crop yield
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prediction. In result, we got a mean absolute error of 0.086, which further de-
normalised to 930 kg per10000m?. This shows the 24% of the average yield per
10000m? in the dataset, i.e., 3828 kg. For the average farmer in our dataset,
this equals 16.3 tonnes total yield, which is slightly better than predicting the
total yield.

Yield per hectare, ordered by yield Yield per hectare, ordered by yield
0.8 4
1.04 . prediction i —— prediction i
——- yield ! 0.74 ——- vield {
0.8 H
0.6
th
064 " b
. 0.4+
044 . 0.3
0.2 4
021 &
y 0.1
it [
0.04' 0.04 '
0 2000 4000 6000 0 2000 4000 6000
Ordered by prediction Ordered by prediction
1.0 yield : 1.01 — yield
—~—=- prediction ey ——~- prediction
: ’ 0.8 1
0.6
0.4 4
0.24 AUE
!
0.04
T T T T T T T T
0 2000 4000 6000 0 2000 4000 6000

Fig. 4. Neural Network predictions for crop yield production based on harvested area.

4.3 Grants Used as a Proxy for Area

For this experiment, we utilised the Norwegian grain delivery data and grant
reports data from the year 2013 to 2019. We observed the change in public grant
reports data from 2017 on wards that include additional information, such as
area harvested per grain type. From 2013 to 2016, the grant reports included
financial details of a total harvested area and grants received per each farmer.
In this experiment, we focus on considering the grants per total harvested area
to compare with previously explained experiments. Where we faced a challenge
to distinguish the quantity of each different grain type in that harvested area.
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Because these grant reports also include grass land and the grain crops that are
harvested for animal fodder use. Despite this, with the additional three years
of grain delivery data, the model could train and predict reasonably well the
farmer’s relative production. It was challenging to directly compare the results
described in Section 4.2, which used the area feature directly to the results using
grants as area (See Fig. 5). Using grant reports provides additional insights, but
it is less granular, and the amount of grants per hectare is fluctuating from year
to year and from commune to commune. We see that the model reaches a loss
of 0.115, which is 0.028 higher than what was achieved with the more detailed
area in Section 4.2. We also saw a tendency of the model to guess the overall
average, as shown in the bottom right plot of Fig. 5.
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Fig. 5. Neural network using grants as a proxy for area to utilise all available data.

4.4 Predicted Crop Yield with Different Grain Types

To address the challenge, we investigated in Section 4.3; we focused on training
the model to predict crop yield with different grain types in the harvested area
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by utilising our collected data corpus. In result, we observed five different grain
types, four alternative yields, and one for the actual yield per each farmer. This
may identify the most suitable grain type for the farm-land that can further
provide the knowledge-based assistance to the farmers, See Fig. 6. As can be
observed from Fig. 6(a), the farmer chose to grow wheat, where the predictions
are best for the rye and rye wheat, and wheat grain type. This shows that
the farmer justifies the selection of the grain type in the growing season in the
farm-land. On the other side, the other farmer (See Fig. 6(b)) selected to grow
barley in the same growing season, which is clearly shows a worst prediction.
Therefore, these predictions make the farmers understand the type of grain used
to grow in a particular growing season to get the maximum of benefit in crop
yield production.

Prediction by hectare Prediction by hectare

Kg delivered/ hectare
Kg delivered/ hectare

wheat  ryeand ryewheat  wheat wheat  rye and ryewheat  barley

Type Type

(a) (b)

Fig. 6. Different crop yield predictions from two different farmers in a particular grow-
ing season.

4.5 Effects of Weather on Crop Yield Prediction

In this experiment, we utilised weather data along with one year of meagre
crop yield data. We selected the crop yield dataset of the year 2018 as the base
dataset, because we observed the least grain production in this year since 2013.
In addition, we utilised weather data from the year 2015 [17][37][38]. Therefore,
the selected data were fed to the model, and the results (See Fig. 7) show that the
network can accurately predict the productions as compared to the production
on average in 2018. We also see that the network predicted a 100 kg per hectare
increase (34% increase) where we combined weather data from 2015, showing
the consistency with that year’s much higher grain production. However, the
actual average yield from 2015 was even higher than the predicted 377 kg (de-
normalized) per hectare [38].
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Fig. 7. The effects of applying weather data from a year with known good weather.

5 Conclusion and Future Work

This paper identified the potential challenges in predicting crop yield produc-
tion. This research study found that the weather and climate factors lead to
significant aspects determining crop yield. As a result, we utilised publicly avail-
able data from Norwegian grain farmers and geographic location data, daily
weather temperatures, precipitation, and historical production numbers. Using
a deep neural network with three hidden layers, we got a crop yield prediction
accuracy of 930 kg per hectare. The neural network appeared to generalise well
on weather data, even when tested on data from an earlier year that was not
included during training. By changing the input manually, the network could
be able to predict the quantity of the different yield types a farmer could have
produced. This shows that it could be possible to use similar models to provide
knowledge-based assistance to the farmers in deciding a particular grain type to
plant in the growing season.

Based on this preliminary experimental study, we define our future work,
which needs further exploration. Although data were gained and processed at
several stages throughout, getting more data could improve learning. Thus, we
list some potential data sources that can be considered for future work. First, the
Sentinel-2 Satellites provide satellite images of the earth, usually at 5-10 days
intervals, depending on the visibility conditions. This setup should give the model
additional input to predict crop yields better. Second, we can use geographical
location-based polygons for individual fields provided by the Norwegian Digifarm
organization °. This data can be used to monitor the crops’ condition during the
growth period. Third, getting additional input from the farmers regarding the
cultivation of their crops could provide better insight into how these factors
affect yield. This could be data like watering, pesticide use, sow date, harvest
date, and so on. Given a good learning model, it should improve performance,
as these are all factors that should affect yield to a significant extent.

® Digifarm AS. From crop to the cloud. https://digifarm.io/.
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Abstract. According to the Analytical Report on Distance Learning in
Brazil (EAD), the number of remote learning courses in various modali-
ties, especially in tertiary education, has grown significantly over the past
years. Alongside this trend, dropout rates of students are reaching 75%
in technical courses and around 40% in tertiary education. One of the
factors causing the increasing dropout rates is the low academic perfor-
mance of students culminating in their respective failures [2]. This work
proposes to use Natural Language Processing to help solve some of these
problems. We propose using (NLP) and Deep Learning as methodolo-
gies for supervised classification of texts produced by distance learning
students to predict low academic performance and allow educational in-
stitutions to react appropriately.

Keywords: Deep Learning - Natural Language Processing - Student
Performance

1 Introduction

According to the analytical report on remote learning in Brazil, published in
2018 by the Brazilian Association of Distance Education (Abed), the number
of undergraduate and specialization courses in the distance modality (EAD) is
growing continuously. Alongside this, according to the same report [1], dropout
rates of students are increasing, reaching 75% in technical courses and around
40% in tertiary education. The discussion surrounding the main factors that
cause these failure rates is divided. Some authors point out social, institutional,
and even personal factors [1]. However, a factor that stands out significantly, as
a cause of these dropouts, is the student’s low academic performance [2]. These
high dropout rates in the context of courses offered by the government result
in the loss and waste of public resources. Therefore, independent of the reasons
that lead to these high dropout rates, it is essential that the educational society,
as well as the involved managers, think of strategies to combat this problem.
One possibility to analyze the failure and dropout of students is through the
data that the students themselves record on the online learning platforms. A spe-
cific and abundant type of data on these respective platforms is texts, produced
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in discussion forums, homework, essays, or even in social interaction between stu-
dents. Natural Language Processing, or simply NLP is a computational tool to
analyze texts. NLP is a multidisciplinary area that encompasses Mathematics,
Computer Science, Artificial Intelligence, and Linguistics to analyze problems
related to the generation, interpretation, and manipulation of human language.

Due to the massive amount of text that is produced on the daily basis in
blogs, news portals, social networks, etc., NLP currently receives a lot of atten-
tion from researchers and has become a heavily data-driven field. Over time,
various Machine Learning approaches, that take advantage of the large quantity
of data to map patterns, have been widely used in NLP applications. Among
them, we can highlight Naive Bayes, k-Nearest Neighbor (KNN), Hidden Markov
Models, Conditional Random Fields, Decision Trees, Random Forest, and Sup-
port Vector Machines (SVMs). However, for efficiency and assertiveness reasons,
these approaches have recently been partially replaced, or at the very least im-
proved, by Deep Neural Networks [4].

Deep Neural Networks, also known as Deep Learning, have achieved remark-
able results in several fields of human knowledge including, but not restricted to,
Computer Vision, Speech Recognition, and Text Classification [3]. For Text Clas-
sification, which considers texts as predictor variables in a supervised Machine
Learning model, two types are applied to lead to good results; Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) [3]. CNNs
can learn a local response from temporal or spatial data, but they cannot learn
sequential correlations. In contrast, RNNs are specialized in sequential model-
ing, but cannot extract features in parallel. According to [3], both models, when
used together and with the addition of other techniques, can present significant
results in text classification.

Therefore, the present work has the main objective to apply Text Classi-
fication techniques, using network architectures such as CNNs, RNNs, among
others, to predict the possible pass/fail of students to identify, in some cases
prematurely, one of the main causes of the high dropout rates.

2 Related Work

The area of research related to the prediction of student performance is multidi-
mensional and can be explored and analyzed through various perspectives, such
as applying statistical techniques to predict dropouts directly, or analyzing and
predicting the factors that most influence dropouts, such as the failures [19].

In the past, several works used Supervised Learning algorithms to classify
students who dropped out of school, a good approach to the topic was dis-
cussed in [7] and [6]. In both works, the techniques that stood out the most
were Naive Bayes, Association Rules Mining, RNA-Based Algorithms, Logistic
Regression, CART, C4.5, J48, Bayes Net, Simple Logistic, JRip, Random Forest,
and ICRM2. However, when the addressed problem is specifically classification,
two methods were widely used with satisfactory results, Neural Networks and
Decision Trees [8]. The advantage of Neural Networks, for example, is that they
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can detect complex nonlinear relationships between dependent and independent
variables [9], while Decision Trees stand out due to their simplicity and inter-
pretability for mapping the searched patterns [10].

Specifically, on classroom performance, the authors of [8] carried out a sys-
tematic review of the literature to observe the characteristics that substantially
influence the phenomenon. We can highlight studies that implemented machine
learning techniques to analyze student behavior and predict the risk of failure
[20] and [21], for example. The authors [22] used machine learning techniques
sequentially in the timeline to predict students at risk of failing in the second,
fourth and ninth weeks of the first year of engineering. Implementing a logis-
tic regression model, they achieved an accuracy of 98% in the ninth week. In
addition, the same authors performed several other tests, including the applica-
tion of Support Vector Machines (SVM), Naive Bayes Classifier, Decision Tree,
K-Nearest Neighbor, and Multi-Layer Perceptron, to identify the best predic-
tion method. Another work that successfully applied logistic regression was [23].
Some works pointed out that student engagement is also a useful and important
parameter to map student behavior, stating that more engaged students perform
better [24], [25], an intuitive fact that was proven by the authors.

This present work differs from the others mentioned above as it purely applies
text classification to the problem of predicting student failure in online courses,
using Deep Learning and recent Natural Language Processing techniques.

3 Data Preparation

As a source of data for this work, database tables from students’ distance learn-
ing courses at the Federal University of Santa Catarina (UFSC) were used. We
sought to work with a final base, where students cannot be directly identified.
Even with such precautions, a project was submitted to the Ethics Committee
for Research with Human Beings at UFSC (CEPSH), to formalize the research
and reinforce responsibility related to data treatment. After processing and eval-
uating the project by CEPSH, we received authorization to access and process
the data.

3.1 Database

The complete database consists of 419 tables, of which 7 were used. After pro-
cessing, the final database consists of 50,356 records, representing 259 courses
and 3,492 students. Each record corresponds to a text written by the student in
the forums of the platform and was linked with the respective outcome of the
student in the course to which the forum is linked. A student was considered
Passed when the grade achieved was equal to or greater than 6, in which case
the student receives the label 1. Students with a grade lower than 6 were con-
sidered as Failed and received label 0. A diagram of the tables used is shown in
Figure 1.
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Fig. 1. Diagram of the tables of the database used

3.2 Cleaning, Treatment and Organization of Data

To prepare the student texts, in order to use them with Deep Learning algo-
rithms, some data cleaning, and treatment techniques were applied. Punctua-
tions, special characters, HTML tags, e-mails, URLs, phone numbers were re-
moved. Portuguese words that when removed from the sentence do not affect
general understanding (stopwords) were also excluded. Subsequently, each word
of each text was separated (tokenization), to transform them into unique numer-
ical values (IDs). And finally, empty lines were also removed. Figure 2 shows an
example text of one of the students without treatment, clean and tokenized and
in numeric format, respectively.

base_curso.msg[1]

'Toda essa desconfianga com um diploma EaD gerou-me uma ddvida: o que diz o diploma? Estard nele descrito claramente c
urso a distancia? Ndo que eu me importe, mas o mercado sim! Serd que a mudanga, o caminho para a aceitagdo deste tipo
de ensino ndo deveria partir dai? Sem distingdo, sem preconceitos! '

sentences|[1]

‘toda desconfianga diploma ead geroume divida diz diploma estard nele descrito claramente curso distancia importe merc
ado sim mudanga caminho aceitagdo deste tipo ensino deveria partir dai distingdo preconceitos

print(sequences[1])

[231, 5015, 3881, 185, 21781, 85, 221, 3881, 1503, 3609, 2280, 3224, 36, 214, 17746, 80, 37, 437, 520, 2281, 357, 184,
70, 302, 238, 2030, 5619, 6126]

Fig. 2. Text throughout treatment

The texts submitted by the students do not follow the requirements in re-
gards to the word count, as such some categories were created to analyze the
distribution of the word count in the respective categories. Figure 3 represents
the distributions.

Most students texts are distributed among the categories ’between 10 and
50 words’, ’between 50 and 100 words’ and ’between 100 and 200
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Fig. 3. Distribution of word count by categories

words’. Due to the amount of data available, we chose to apply the Deep Learn-
ing algorithms to these thee categories. We observed that the number of students
who failed the subject decreased with increasing word count. For this reason, we
apply the algorithms in each category separately to avoid bias at the time of
learning. The exact distribution of these 3 categories can be seen in Figure 4.

Between 10 and 50 words
Failed
Passed
73%
83%

27%

Between 50 and 100 words

Between 100 and 200 words

Failed
Passed

Failed
Passed

87%

17% 13%

Fig. 4. Students passed x failed in main categories

Words that appear rarely, such as names, for example, receive a mark ”out
of vocabulary” (OOV) to be disregarded when training the Embedding Matrix.
Texts with fewer words were completed with zeros until they became the same
size as the largest sentence (padding) to guarantee that in the final process all

sentences are of the same size.
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3.3 Word Embeddings

To use computational methods for text processing and analysis, it is necessary
to convert them into a numerical format suitable for the respective technique
that will be used. In the first works surrounding NLP the vector space model
was normally used, in which the values of individual words were estimated using
the weighting method (based on the frequency with which the words appear)
forming the vector of characteristics of each document which is known as the
Bag of Words (BOW) Technique [12]. However, given the current amount of
data, the size of the used vocabularies, and the fact that BOW is not efficient
at capturing semantic information, the researchers investigated other ways of
representing documents and words in a dense, low-dimensional, semantically
significant vector space [12]. One method that has recently attracted attention is
the distribution hypothesis, which assumes that contextually similar words have
similar semantics [11]. Word representation methods based on the distribution
hypothesis are mainly divided into three types [11]:

1. Matrix-based representation, also known as distributive representation;

2. Cluster-based distributed representation;

3. Distributed representation based on neural networks, also known as Word
Embeddings.

Among the Word Embeddings techniques, one that has stood out for ob-
taining significant results is Word2vec [13], which is a distributed representation
learning algorithm to learn continuous dense vector representations for words
in low-dimensional vector space. The Algorithm consists of the joint use of two
related models: the continuous bag of words model (CBOW) and the Skip-Gram
model. CBOW predicts the current word from its surrounding context words in
a sentence within a window centered on the current word, while the Skip-Gram
model predicts the surrounding context words of a given word in a sentence
within a symmetrical window. An important feature of this type of approach
is that vectors of words in vector space are close to each other when the corre-
sponding words are semantically similar to each other. This gives us the benefit
of being able to infer semantically similar words by comparing the distance be-
tween the word vectors created by Word2vec. Then using Word2vec it is possible
to create an Embedding Matrix that maps each word index to its corresponding
embedding vector.

It is common to use Embedding Matrix pre-trained by other research groups.
Even this training has been the subject of entire dedicated work, as is the case
of NILC-Embeddings [14], which is a repository for the storage and sharing of
vectors of words generated for the Portuguese language, whose objective is to
promote and make ready-made vector resources accessible. In the present work,
we chose to train our Embbeding Matrix, as we believe that the corpus extracted
from the forums of the distance learning courses has intrinsic characteristics that
would be lost when adopting another approach. So we did it, using the Python
implementation of the Gensim tool version 3.8.3, which is an open-source library
for modeling unsupervised topics and NLP. The Fig. 5 provides an example of
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the application of the Embedding Matrix to obtain words similar to the word
”aluno” in the corpus used in this work.

In [47]: word_vectors.similar by word("aluno")
Out[47]: [('estudante', 0.8087526559829712),
'alunos', 0.7965363264083862),

‘educador', 0.7912662029266357),
'educando’, 0.761611819267273),
'educandos', 0.7417762875556946),
'professor', 0.715225875377655),
'plateia’, 0.6950972080230713),
'ensinoaprendizagem', 0.6872051358222961),
‘autodidata', 0.6790434122085571),
'discente’', 0.6764541268348694)]

Fig. 5. Similarity by words using Word2vec

After we trained the Embedding Matrix, we can use it for the initial weights
in the first layer of the neural network.

4 Predicting Student Performance

Text classification can be considered a sequential modeling task, for this rea-
son, Recurrent Neural Networks (RNNs) [17] are often used. However, for long
data sequences, traditional RNNs suffer from two problems inherent to their
functioning, explosion and gradient dissipation. In this context, the Long Short
Term Memory (LSTM) [15] emerged, which are RNNs endowed with long-term
memory units, which satisfactorily solve the problems with the gradient. Bidirec-
tional long-term memory (BiLSTM) [16] is a natural evolution of LSTM networks
because they are able to traverse the sequences in both temporal directions. For
this reason, BiLSTM is generally superior to LSTM for working with texts.

The vector representation of texts usually has a high dimension. The high-
dimensional vector as the input to an LSTM will cause a sharp increase in the
parameters of the network and make it difficult to optimize it. The architecture
of Convolutional Neural Networks (CNNs) [18] can be useful to extract features
from data while reducing dimensionality. For that reason, the convolution oper-
ation can be used in this context. Therefore, the LSTM, CNNs, and BiLSTM
architectures will be tested to classify the texts used in this work. The following
sections will present the test results. The pseudo-code Algorithm 1 summarizes
the order in which the experiments will be conducted.

All neural network architectures were implemented in Python version 3.7.10,
using API Keras version 2.4.3 over Framework Tensorflow in version 2.4.1.

4.1 Evaluating Metrics

As the number of failed students is significantly lower than the students that
passed, we apply SMOTE for load balancing. With balanced data, Accuracy
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Algorithm 1: Pseudo-code for text classification
1: Data load
Cleaning, organization and labeling
Training and creation of the Embedding Matrix
Separation into categories by word number distribution
load balancing
Application of algorithms (MLP, LSTM, CNN, CLSTM, C-BiLSTM)
Evaluation of results

was used as an evaluation metric to measure the overall performance of the
classification. Accuracy is calculated as the ratio between the number of correct
predictions to the total number of predictions:

TruePositive + TrueNegative

(1)

Another metric that can be used is Area Under The Curve (AUC) which is
calculated about the Receiver Operating Characteristics curve (ROC). ROC is a
curve that measures performance for classification problems at various threshold
settings and is a probability curve, while AUC represents the degree or measure
of separability. It shows how much the model is capable of distinguishing between
classes. The ROC curve is plotted with the True Positive Rate (TPR) against
the False Positive Rate (FPR) where TPR is on the y-axis and FPR is on the
X-axis.

Precision is the fraction of relevant instances among the retrieved instances,
while Recall is the fraction of relevant instances that were retrieved. For a clas-
sifier dedicated to binary classification, f1_score is an important indicator that
combines Recall and Precision as follows:

A =
ceuracy TotalSample

1 2 x Precision * Recall
_score =

(2)

Precision + Recall

4.2 Parameter Settings

Data was separated into 80% for training, 10% for validation, and 10% for test-
ing. During training in the Embedding layer, the input string is defined as the
nth word in the vocabulary. The Embedding Matrix was trained from the avail-
able corpus with a dimension of 100. The memory dimension of the LSTM and
BiLSTM networks was set to 128 with 50 filters of size 10 in the convolutional
layers. The training batch size for all datasets was 256. The dropout rate in
most tests was 0.6. A backpropagation algorithm with the Adam stochastic op-
timization method was used to train the network over time with a learning rate
between 0.001 and 0.0001. The loss function used was Binary Cross Entropy.
After each training period (epoch), the network is tested with the validation
data.
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5 Comparison and Analysis of Results

Below are the comparison tables of the application of Deep Learning network
architectures to classify texts by EAD students at UFSC. The following architec-
tures were used; Multilayer Perceptron (MLP), Convolutional Neural Networks
(CNN), Long Short Term Memory (LSTM), and Bidirectional LSTM. CNN and
LSTM (C-LSTM) and CNN and BiLSTM (C-BiLSTM) were used in a hybrid
way.

In all scenarios, shown in Table 1, Table 2 and Table 3, using accuracy
as the main evaluation metric, C-BiLSTM showed better performance. This is
justified by the fact that in this type of architecture the convolutional networks
serve the purpose of extracting the main characteristics of the analyzed vectors
while acting in the reduction of the dimension of the same vectors and Bi-LSTM
work by traversing the vectors in both temporal directions, accentuating the
semantic characteristics already calculated by the Embeddings Matrix. Both,
when used together, naturally present good results. The Fig. 6, Fig. 7 and Fig
.8 present the graphs with a history of accuracy and error over the epochs for
the 3 categories tested by applying the C-BiLSTM architecture, which obtained
the best results.

Table 1. Results of experiments with texts between 10 and 50 words

- “Accuracy [Loss [AUC f1_score
MLP 0.81 0.42 0.81 0.80
CNN 0.84 0.44 0.84 0.83
C-LSTM ]|0.84 0.45 0.84 0.82
C-BiLSTM||0.86 0.40 0.86 0.85
Training and validation accuracy Training and validation loss
0.90 4+ —— Accuracy —— Loss

——- Validation Accuracy

0.7 q —=- Validation Loss
0.85 4

0.80 0.6
0.754

0.70 4

Accuracy

0.65 4

0.60

0.3 4
0.55 4

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Fig. 6. History of the accuracy and error of the C-BiLSTM architecture applied to the
training and validation data for the 10 to 50-word category
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Table 2. Results of experiments with texts between 50 and 100 words

- “Accuracy [Loss [AUC f1_score
MLP 0.94 0.17 0.95 0.94
CNN 0.94 0.22 0.94 0.94
C-LSTM  {|0.93 0.23 0.93 0.92
C-BiLSTM ||0.95 0.21 0.94 0.93
Training and validation accuracy Training and validation loss
0.95 4 — Loss
0.90 1 0.7 4 ——- Validation Loss
0.85 0.6
.. 0:80 1
[ 05
g 0.751 E
2 0.70 4 0.4 1
0.65 03l
0.60 1 —— Accuracy
055 4 -=-- Validation Accuracy 0.2 1
0 20 40 60 80 100 0 20 20 60 80 100
Epochs Epochs

Fig. 7. History of the accuracy and error of the C-BiLSTM architecture applied to the
training and validation data for the 50 to 100-word category
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Table 3. Results of experiments with texts between 100 and 200 words

- “Accuracy Loss [AUC f1_score
MLP 0.95 0.16 0.95 0.98
CNN 0.97 0.10 0.97 0.97
C-LSTM ||0.95 0.19 0.95 0.95
C-BiLSTM||0.98 0.12 0.98 0.97
Training and validation accuracy Training and validation loss

— loss
0.7 —-- Validation Loss

0.6

0.5 1

Loss

0.4

0.3 4

—— Accuracy 0.2
—=—- Validation Accuracy

0.5

T T T T T T T T T T T T
o] 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Fig. 8. History of the accuracy and error of the C-BiLSTM architecture applied to the
training and validation data for the 100 to 200-word category

6 Conclusion and Future Works

The main objective of this work was to apply Deep Learning architectures to
create a prediction methodology to be used with students of EAD (distance
education) courses at UFSC, to predict whether students either passed or failed
from the analysis of the texts typed by them. Such an approach could be used
to anticipate and avoid one of the main causes that lead students to drop out,
thus reducing the intrinsic costs of implementing an EAD course and avoiding
the waste of valuable resources. The best results obtained for the classification
of texts were when applied to the category of texts between 100 and 200 words
using the C-BiLSTM Deep Learning architecture, reaching an accuracy of 98%.
The same algorithms were also applied in the ranges between 10 and 50 words
and 50 and 100 words, obtaining slightly lower results. In some cases, even
using a small number of Learning Rates and also a reduced number of epochs,
the learnings diverged, preventing obtaining the necessary pattern to make the
predictions. This occurred when applying the LSTM architecture to the texts. A
point that can also be highlighted is that when we analyze records with a greater
number of words the performance of the applied network architectures increases.
This fact may, empirically, suggest that it is more accurate to predict the failure
and passing of students from the texts with the highest number of words. This
fact can be explored in more detail in future works. A possible direction, if
sufficient data is available, is the application of the architectures tested here for
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the direct prediction of dropout rates. Other points that can be addressed in
future work are the application of other Deep Learning architectures as well as
direct application without the segregation of texts into word number categories.
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Abstract. In recent years, deep neural networks (DNNSs) have advanced to be-
come the state-of-the-art for machine learning (ML). Among the numerous deep
learning algorithms, the most well-known is the convolutional neural network
(CNN), a type of neural network that has been the leading technique for computer
vision tasks. However, deploying convolutional neural networks in resource-con-
strained devices is challenging due to the model's large number of parameters.
As aresult, there is a growing interest in model optimization through model ac-
celeration and compression techniques, including network pruning, quantization,
and model distillation. However, network pruning is amongst the most advanta-
geous methods to solve the problem as it considerably reduces memory size and
bandwidth. This paper proposes a novel method to compress and accelerate neu-
ral networks from a small set of spatial convolution kernels. Furthermore, the
paper introduces a novel pruning algorithm based on density-based and grid-
based clustering methods due to the limited research on clustering-based pruning.
Finally, the performance of the pruning algorithm was analyzed, and the experi-
mental results show that the proposed algorithm achieves higher accuracy on im-
age classification than the original model.

Keywords: Deep Learning, Convolutional Neural Networks, Model Compres-
sion and Acceleration, Neural Network Pruning, Clustering Methods.

1 Introduction

Deep neural networks (DNNs) have led to the evolution of numerous artificial intelli-
gence (Al) applications, including computer vision [1], speech recognition [2], natural
language processing [3], audio recognition [4], and machine translation [5]. The DNNs
provide state-of-the-art accuracy for many Al applications, especially computer vision.
Computer vision's primary goal is to replicate the human visual system enabling com-
puters to identify objects in images and videos. The field has progressed with the ad-
vancement of DNNs as it has exceeded humans in particular image detection and clas-
sification tasks.

The development of convolutional neural networks (CNNs) has resulted in excep-
tional levels of accuracy in computer vision tasks [6]. The CNN models have achieved
the best results in image classification [7], object detection [8], and instance segmenta-
tion [9]. The success of CNNSs is due to the large number of parameters as models
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become larger to improve performance. However, deploying these models in resource-
constrained devices is challenging due to the model's large number of parameters.
There are several approaches to compress and accelerate deep neural networks, such as
parameter pruning [10, 11] and quantization [12], and knowledge distillation [13].
Firstly, the parameter and quantization methods investigate the redundancy in models
and remove the redundant model parameters. Furthermore, the knowledge-distillation-
based methods learn a distilled model and then train a smaller neural network to repli-
cate the output of a bigger network.

In this paper, we address the problem of compressing and accelerating deep neural
networks. Many recent works have explored different techniques to prune deep learning
models, such as magnitude-based [14-17], clustering and similarity-based [18-23],
and sensitivity analysis-based methods [24-29]. However, there is limited research in
pruning based on clustering techniques.

Subsequently, our proposed solution investigates more complex clustering algo-
rithms based on density-based and grid-based clustering methods. Furthermore, the
pruning algorithms results were compared through the accuracy, FLOPSs, and compres-
sion ratio benchmarks. In particular, our compressed models achieve higher accuracy
on image classification than the original model.

The main contributions of this paper are to (1) present a comprehensive review of
the network compression and acceleration techniques, including network pruning. (2)
Propose a novel pruning algorithm based on the CLIQUE clustering method that iden-
tifies and removes redundancy in CNN's while maintaining the accuracy and through-
put tradeoff. (3) Compare the pruning algorithms results through the accuracy, FLOPS,
and compression ratio benchmarks.

The remainder of this research is organized as follows. In Chapter 2, we present
work related to model compression in deep neural networks. Chapter 3 describes the
research design and implementation. Chapter 4 reports the experimental results and
analysis of the pruning algorithm. Finally, conclusions and future work are presented
in Chapter 5. 5.

2 Related Work

Numerous studies have been conducted to compress and accelerate neural networks
using techniques such as network pruning, quantization, low-rank factorization, and
knowledge distillation. However, network pruning is the most famous network optimi-
zation technique that compresses the network by removing parameters. Pruning deep
neural networks was initially proposed in the 1990s [24, 30]; however, there has been
an increasing interest in the field due to the advancement of deep learning. The pruning
algorithms can be categorized based on magnitude-based pruning methods, clustering
and similarity methods, and sensitivity analysis methods [31]. However, according to
the "Methods for Pruning Deep Neural Networks" survey [31], there is limited research
in pruning algorithms based on clustering. Consequently, in this paper, we propose to
experiment pruning CNN models using the CLIQUE clustering method.
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Neural networks generally contain duplicate parameters that can be removed through
clustering methods. A few existing works have pruned CNNs based on clustering meth-
ods such as K-means clustering, agglomerative hierarchical clustering, etc. Ayinde et
al. [32] propose a method of identifying different filters using clustering methods. The
similar filters are grouped using an agglomerative hierarchical clustering method, and
then one filter is selected from each cluster, and the remaining are removed from the
network. The agglomerative hierarchical clustering method operates in a bottom-up"
manner as in each step, and the similar clusters are combined into a new cluster. Their
results show that their approach provides a better pruning rate and accuracy than other
methods, such as network slimming and try-and-learn methods.

Moreover, the authors in [33] introduce a compression algorithm based on corset
interpretations of filters. The compression method is based on corset extraction as a
smaller set of points is used to represent a large set of points while preserving the nec-
essary property of the initial set. Hence, the sets to be represented are the weight matri-
ces, and the property to be maintained is the activation pattern. Furthermore, the authors
utilize the Sparse principal component analysis (SPCA) algorithm, which reduces the
number of components while minimizing the reformation error. The SPCA algorithm
uses sparsity constraints in the PCA objective. Also, they developed the algorithm with
an activation-weighted importance score for each convolutional filter. The method is
fast and straightforward as it achieves compression without retraining. The results
achieved by this method reduced the size of AlexNet by approximately ten times with-
out decreasing the accuracy. However, there are still redundancies remaining in these
compact networks, and the matrix decomposition complexity may be higher for more
extensive networks

Furthermore, the work in [34] proposes compressing CNNs by reforming the net-
work using a small collection of spatial convolution kernels. First, the 2D kernel cen-
troids are extracted using K-means clustering before training. Afterward, each centroid
replaces the corresponding kernels of the same cluster. Then the indexed representation
is saved as an alternative to the whole kernel. The model is then finetuned, and the
kernels in each cluster share their weights. The results achieved include 10x compres-
sion with clustering and 30x compression with pruning and clustering kernels. On the
other hand, they did not study the compression of FC layers and pointwise convolu-
tions, which are common in modern architectures. Also, they did not investigate the
relationship of quantization error to accuracy.

Zhou et al. [35] propose a method to prune redundant channels by proposing an ad-
ditional cluster loss term in the loss function, which forces filters in each cluster to be
alike online. This method is useful for pruning networks within residual blocks as the
clusters in every layer can be defined; however, it is unchangeable with different mod-
els. Additionally, the work [36] prunes filters based on the K-means algorithm. They
obtain the relationship of similarity among filters and keep the filters close to the cen-
troid of each cluster.

Also, the authors in [37] propose a feature-agnostic method, which obtains a rela-
tionship between input feature maps and kernels. The filters are pruned based on a ker-
nel sparsity and entropy (KSE) indicator. It can compress each layer efficiently, provid-
ing fast performance, achieving 5x FLOPs reduction and 3x compression on ResNet-
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50. However, the issue with the filter pruning methods is that each layer's compression
ratio must be manually set, which is time-consuming. In addition, Centripetal SGD [38]
compresses the CNN model by clustering the identical filters. The method groups the
filters through K-means and makes the filters in one cluster the same through backprop-
agation to place identical filters into one cluster. Yu et al. [39]demonstrate an efficient
structural pruning method, Kernel Cluster Pruning (KCP), that clusters similar filters
based on a technique inspired by the K-means clustering approach. Their method per-
forms better than several state-of-the-art pruning methods with minor accuracy loss.

Most of the recent pruning algorithms based on clustering focus on the K-means
clustering approach; however, numerous other approaches can be explored. Therefore,
we experiment with a more complex clustering method, CLIQUE.

3 Network Pruning

The pruning section begins with introducing the CNN formulation and pruning algo-
rithm. Afterward, we present the algorithms based on the partitional-based, density-
based, and grid-based clustering.

3.1  CNN Formulation

We present the methodology to be followed to formulate the pruning algorithm that
compresses convolutional neural networks (CNNSs) by reconstructing the network from
a small set of spatial convolution filters. The terms and notations are defined as follows;
we will assume the N filters have the same spatial sizes for simplicity. Also, the con-
volutional layer m comprises of the input x and output y with the C;,, and C,,,; channels.
Then, w¥ is the weight of the k convolutional layer where wk € RCoutXCinxhxw .
thermore, the i input channel of x is denoted as x; and j™ output channel of y is denoted
as y;. The output of the channel y; is computed as Eq 1.

Y= Tomw x x @

The CNN models are generally trained without any structural limits on the shape of
weight tensors. As a result, there may be N individual filters in the network. Hence, our
primary goal is to represent the filters more efficiently by means of the K-means and
CLIQUE clustering approaches.

3.2 Pruning Algorithm

The general pruning algorithm is detailed in algorithm 1, with the primary goal of prun-
ing the filters in the CNN model to remove the redundant filters [40]. The algorithm
removes the filters using either of the K-means and CLIQUE clustering approaches.
We start by going through the layers of the CNN model, and then we obtain the different
filters Wc. Then, the dimensionality reduction technique Principal Component Analysis
(PCA) is applied to reduce the number of dimensions. Furthermore, the constancy of
the optimal hyperparameters is identified through the elbow method. The technique
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begins by choosing a cluster size between 1 and N, where N is less than or equal to the
number of points in the dataset. After that, the sum of intracluster distances is computed
for each cluster. The elbow point is then identified at which the rate of the sums drops
slowly. The elbow method is often used for the K-means algorithm; however, it may
be applied to various clustering methods. Accordingly, the elbow rule was utilized in
our pruning approach to determine the optimal number of clusters for the K-means and
the optimal unit size for the CLIQUE. Afterward, the function CLUSTERING will pro-
vide the clustered filters ns and indices of clusters Lt which corresponds to a fraction of
the indices of columns W.. After that, a smaller filter matrix is produced Weprune that is
created using the L¢to subgroup We.

r T =
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Fig. 1. lllustration of the Proposed Pruning Method

Algorithm 1: Filter-based Pruning with Automated Hyperparameter Selection

1. input: {ac<-number of layers, m « layer, W < weight of layer m, ¢ <0}
2. while c less than a

3. get: convolutional filters of layer ¢

4. obtain: different filters Wc

5 perform PCA on filters Wc

6 define SSE Error List

4. OH=1

5. set Hmax

6 while OH less than Hmax

7 CLUSTERING(WCc, OH)

8 calculate cluster SSE error

9. append SSE error to SSE Error List

10. OH<OH+1

11.  end while

12.  plot elbow plot with Hmax versus SSE Error List

13.  find H (optimal hyperparameter) by using knee locator
14. Ly, nf = CLUSTERING (Wc, H)

8. define WcPruned

9. k<0

10 while length of Lt is greater than k
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11. copy Lt g column into We into k column Wpruned
12. kK < k+1

13. end while

14. ce—c+l

15. end while

16. build: pruned model

17. initialize: weights of the ¢ layer with W¢Pned

3.3 K-Means Clustering Approach

The K-means clustering approach is one of the earliest and well-researched literature
clustering techniques. The K-means clustering technique is based the partitional clus-
tering. First, let us define the terms and assumptions used in this section and the subse-
quent sections. The filters h*h mentioned in the previous section may be flattened out
into a feature 2d matrix N x h2. Assuming the filters are grouped into k clusters using
the K-means clustering technique. The technique assigns each entity to the closest cen-
troid of the cluster it belongs to in a multi-dimensional space.

Each filter may then be replaced by the centroid value of such cluster and reshaped
back to h*h. This would significantly reduce the total number of filters from N to k and
compress the model size. The accurate value of k may be derived from multiple exper-
iments on the dataset and is also a function of the tradeoff between size, speed of infer-
ence, and accuracy.

The first approach to be implemented for the clustering of the filters is the K-means
approach which is detailed in algorithm 2 — K-Means approach below. The algorithm's
input is the weight of the filters and the number of desired clusters. The centroids are
then initialized, and the K data points are selected for the centroids while there is no
convergence of the criteria. Afterward, the data points are assigned to the closest cen-
troid. Then each data point is assigned to the closest cluster. Later, the centroids are
computed for the clusters by selecting the mean of the data points that belong to each
cluster [41].

Algorithm 2: CLUSTERING - Adaptive K-Means Clustering Approach

1. function CLUSTERING():
2. input: {W « weight of filters, K « number of desired clusters}
3. while there is no convergence of the criteria

4, define centroid initial values for n1, nz, ... nk

5 fori=1...N

6. find closest center nk for each wi (data point)

7. update nk with the value of wi (data point)

8 end for

9. calculate: centroid values as mean of data points wi....assigned to the relevant cluster
10. fori=1...k

11. calculate: centroid value as mean of data points wi.... assigned to the cluster Lt
13. set nito be the new centroid

14.  endfor

15. nf<K

16. end while

17. return Ls, nf
18. end function
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3.4  CLIQUE Clustering Approach

The second approach for the pruning algorithm is based on the CLIQUE (Clustering in
QUEst) clustering technique [42]. The CLIQUE algorithm is based on density-based
and grid-based clustering. The algorithm obtains the clusters in subspaces of high di-
mensional data using the number of grids and density threshold input parameters.

The CLIQUE clustering technique includes three main steps: recognizing the sub-
spaces that include clusters, recognizing the clusters, and creating the minimal descrip-
tion for the clusters. CLIQUE first divides the dimensions into grids and then obtains
the dense regions depending on the threshold value. The clusters are then generated
from the dense subspaces utilizing the Apriori approach. The Apriori approach states
that a cluster in a k-dimensional space will also be part of a cluster in any (k-1) dimen-
sional projections of this space. Afterward, the CLIQUE algorithm produces minimal
descriptions for the clusters by determining the maximal regions that include a cluster
of associated dense units for each cluster and the minimum cover for each cluster.

In this approach, the filters will be clustered based on density and grid based ap-
proaches which is detailed in algorithm 3 — CLIQUE approach. First of all, the input
consists of the weight of the filters defined in a vector of n-dimensional points W =
{w;, wy, ..., w, } where w; = {w;;,w;s, ..., Wi, }. The size of the units (U) and density
threshold (¢) input parameters were selected based on the elbow method. The dimen-
sions are first divided into equal intervals b according to the unit size U. Then, the
dense spaces are identified through a bottom-up algorithm that prunes the search space
by utilizing the monotonicity of the cluster with regard to its dimension through the
Apriori approach. The partitions p are considered dense if they are greater than the
density threshold ¢. The dense dimensions are joined to the next dimension, and the
Apriori property discards the dense units from the ser D, of dimensions that have a
projection in (k-1) dimensions that are not in D,,_,. Afterward, the clusters are identi-
fied using the depth-first search algorithm to find the connected components. Lastly,
the minimal description of the clusters is generated by checking both directions of the
i-th dimension, attempting to cover every unit in C [43].

Algorithm 3: CLUSTERING - Adaptive CLIQUE Clustering Approach

1. function CLUSTERING(W, H):

2. input: {W < weight of filters (data) , H « size of units, ¢ « density threshold }
3. p «number of dimensions

3. for each dimension p in W

4. B « partition p into equal intervals according to H

5 b « single interval

6 fix a minimum input parameter @ (by applying Apriori property)

7 foreachbin B

8. if density of b> ¢

9. Dl1<Dlub

10. end for
11. end for

12. K « 1 // dimension we start with

13. while Dk =0

14. KeK+1

15. Dy « set of k-dimensional dense units were (k-1) € Dg_4
16. end while
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17. set m « number of clusters

18. for each high coverage subspace S
19. take set of dense units D, in S
20. while D, = [0}

21. me1

22. select randomly chosen unit u from D,,

23. Cm « current cluster = u U {v; for all v € D,, connected to u}
24. D, < D,-Cm

25. m < m+1

26. end while

27. end for

28. for each cluster CminC
29. whileCm =9

30. | < set containing all the units covered in Cm

31. choose a dense unit u in Cm

32. fori=1toL

33. I < 1 U dense unit of Cm in the neighborhood of u
34. end for

35. Cm «Cm-1

36. end while

37. end for

38. define Lras Cm
39. define nf asm
40. return Ly, nf
41. end function

4 Experiments

The efficiency of our clustering-based pruning approach is demonstrated experimen-
tally using the two representatives CNN architectures ResNet and VGG pretrained on
the CIFAR dataset loaded from torchvision.models of the PyTorch ML framework [44].
The pruning algorithms based on K-means and CLIQUE clustering approaches were
compared, applying them to all layers of our neural networks and measuring the result-
ing accuracy and complexity of the pruned model. Moreover, we quantified the model's
performance and accuracy using the sparsity and model accuracy metrics. First, we set
the K-means and CLIQUE pruning parameters for each layer and prune an equal num-
ber of filters to achieve comparable results. Furthermore, the CLIQUE's grid-size pa-
rameter and the cluster for each layer are defined. Afterward, the number of clusters in
the models is specified by the CLIQUE clustering approaches. Following that, we com-
pare two approaches based on the sparsity and accuracy of the test set.

There is a tradeoff between the model sparsity and prediction accuracy as the more
parameters that are removed, the less accurate the prediction becomes. Furthermore,
the K-means algorithm consistently generates better results on the CIFAR-10 dataset,
as shown by the results in table 1. This is because in K-means, the pruned layer is made
up of centroids, and all other filters are removed from the network, but in CLIQUE, a
random filter from each cluster is selected, and all other filters are deleted. Similarly,
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as demonstrated in table 2, K-means deliver better results in the initial experiments on
the VGG-16 network.

Nevertheless, the pruning algorithm based on the K-means and CLIQUE clustering
approaches requires further enhancements introduced in the following sections. As
firstly, the hyperparameters for the clustering algorithms for each layer must be tuned
in advance. Additionally, the CLIQUE algorithm requires a more accurate cluster ap-
proximation as it currently uses a random filter to represent a cluster.

Table 1. Pruning results of ResNet-56 on CIFAR-10.

Clustering  Clustering Parameters  Resulting Number of  Accu- Spar-
Method Number of Filters Model racy sity
Parameters

None -- -- 2.70E+05 80% 0%

CLIQUE [8,8,8, 16, 16, 16, [9,6,5,16,20,20, 1.73E+05 58% 64.2%
32,32, 32] 46, 40, 43]

K-Means [9, 6, 5, 16, 20, 20, [9,6,5,16,20,20, 1.73E+05 65% 64.2%
46, 40, 43] 46, 40, 43]

CLIQUE [20, 20, 20, 40, 40, [15, 12, 11, 25,29, 2.51E+05 7% 92.9%
40, 80, 80, 80] 29, 62, 62, 59]

K-Means [15, 12, 11, 25, 29, [15, 12, 11, 25,29, 2.51E+05 78% 92.9%
29, 62, 62, 59] 29, 62, 62, 59]

CLIQUE  [(24,24,24,48,48,  [14,14,10,27,31, 2.58E+05  79%  95.6%
(48, 0), (96, 0), (96, 31, 64, 61, 62]

0), (96, 0)]
K-Means  [14, 14, 10, 27, 31, [14, 14, 10, 27,31, 2.58E+05 80% 95.6%
31, 64, 61, 62] 31, 64, 61, 62]

CLIQUE  [32, 32,32, 64, 64, [16, 15, 14, 28,31, 261E+05 79%  96.8%
64, 128, 128, 128] 32, 63, 62, 62]

K-Means  [16, 15, 14, 28, 31, [16, 15,14, 28,31, 2.61E+05  79%  96.8%
32, 63, 62, 62] 32, 63, 62, 62]

CLIQUE  [36,36,36, 72, 72, [16,15, 15,29, 31, 2.63E+05  79%  97.6%
72,144, 144, 144] 31, 64, 63, 62]

K-Means  [16, 15, 15, 29, 31, [16,15, 15,29, 31, 2.63E+05  80%  97.6%
31, 64, 63, 62] 31, 64, 63, 62]

CLIQUE  [40, 40, 40, 80, 80, [16, 16, 14, 28,32, 2.66E+05  79%  98.7%
80, 160, 160, 160] 32, 64, 64, 63]

K-Means  [16, 16, 14, 28, 32, [16, 16, 14, 28,32, 2.66E+05  80%  98.7%
32, 64, 64, 63] 32, 64, 64, 63]

Table 2. Pruning results of VGG-16 on CIFAR-10.

Clustering Clustering Resulting Number of ~ Accu-  Spar-

Method Parameters Number of Filters Model racy sity
Parameters

None -- -- 1.47E+07 86% 0%

CLIQUE  [32,32 64,64,128, [25 37,101,143, 8.33E+06 59%  56.6%
128,128,128, 128, 348, 378]
128, 128]

K-Means  [25,37,101,143,  [25,37,101,143, 8.33E+06  67%  56.6%
348, 378] 348, 378]
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CLIQUE [80, 80, 160, 160,  [38, 80, 189, 378,  1.27E+07  81%  86.2%
320, 320, 320, 320, 474, 486]
320, 320, 320]

K-Means  [38,80,189,378,  [38,80,189,378, 127E+07 83%  86.2%
474, 486] 474, 486]

CLIQUE [96,96,192, 192,  [49,92, 211,413, 133E+07 83%  90.3%
384,384, 384, 384, 485, 497]
384, 384, 384]

K-Means  [49,92, 211,413,  [49,92 211,413, 133E+07 85%  90.3%
485, 497] 485, 497]

CLIQUE [128, 128, 256, 256, [50, 107, 230, 453, 1.39E+07  84%  94.5%
512,512, 512,512, 499, 505]
512, 512, 512)]

K-Means  [50, 107, 230, 453,  [50, 107, 230, 453, 1.39E+07  86%  94.5%
499, 505] 499, 505]

CLIQUE [144, 144, 288, 288, [54, 108, 236,463, 1.41E+07  85%  95.4%
576, 576, 576,576, 500, 507]
576, 576, 576]

K-Means  [54, 108, 236, 463,  [54, 108, 236,463, 1.41E+07  86%  95.4%
500, 507] 500, 507]

CLIQUE [(160, 160, 320, [56, 109, 238, 474, 1.42E+07  85%  96.2%
320, 640, 640, 640, 504, 506]
640, 640, 640, 640]

K-Means  [56,109, 238,474,  [56, 109, 238, 474, 1.42E+07  86%  96.2%

504, 506]

504, 506]

4.1  Automated Hyperparameter Selection

To further improve our approach's performance, we automate the hyperparameter
selection process, which includes determining the optimal hyperparameters for each
layer using the elbow method [45-48]. The elbow method is a visual way for assessing
the constancy of the optimal hyperparameters. In order to identify the optimal number
of clusters for the K-means and the appropriate unit size for the CLIQUE, we used the
elbow rule in our pruning strategy. First, the hyperparameter is initialized, and then the
value is incremented. Afterward, the sum of square error results for each value of H is
calculated. Lastly, the optimal hyperparameter is identified by comparing the difference
SSE of each cluster, with the most intense difference creating the elbow angle, as shown
in figure 2. The SSE formula is shown below, where X; is the object in the cluster c¢; and
centroid.

SSE = Zi'(=1 ijeci”xj - nui||2 (2)

As a result of our enhancements, the pruning based on the CLIQUE approach
achieves better results than the K-means approach, as illustrated in tables 3 and 4, which
is a significant improvement over the initial version. The CLIQUE clustering algorithm
performed better because it combines the concepts of density-based and grid-based
clustering. Also, it can detect clusters in subspaces with drastically varied dimension-
alities. Additionally, it introduces the induction of associated rules through the Apriori
algorithm. Furthermore, CLIQUE can detect clusters in subspaces of significantly
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different dimensionality. Moreover, it utilizes the minimum depth length principle to
select appropriate subspaces. In addition, it interprets the clusters in terms of the dis-
junctive normal form representation.

Table 3. Pruning results of ResNet-56 on CIFAR-10 with Automatic Hyperparameter Selection.

Clusterin Number of Ac-
9 Number of filters Model Cu- Sparsity
Method
Parameters racy
None -- 2.70E+05 83% 0%
CLIQUE [16, 16, 16, 31, 32, 32, 64, 64, 62] 2.67E+05 82%  99%
KMEANS [16, 16, 16, 32, 32, 32, 40, 44, 44] 2.03E+05 59% 75.2%

Table 4. Pruning results of VGG-16 on CIFAR-10 with Automatic Hyperparameter Selection.

Clusterin Number of Accu-
9 Number of filters Model Sparsity
Method racy
Parameters
None -- 1.47E+07 86% 0%
CLIQUE [48, 103, 168, 295, 313, 376] 9.62E+06 82% 65.3%
KMEANS [40, 96, 176, 372, 352, 376] 1.05E+07 82% 71.4%

Table 5. Pruning results of VGG-19 on CIFAR-10 with Automatic Hyperparameter Selection.

Clustering . Number of .
Number of filters Model Accuracy  Sparsity
Method
Parameters
[64, 64, 128, 128, 256, 256, 256, 256,
None 512,512,512, 512, 512, 512, 512, 2.00E+07 84% 0%
512]
[64, 64, 128, 95, 256, 202, 256, 207,
CLIQUE 512,377,512, 412, 512, 243, 512, 1.47E+07 80% 73.3%
512]
[64, 44, 128, 84, 256, 176, 256, 180,
KMEANS 512, 376, 512, 376, 512, 368, 512, 1.51E+07 T7% 75.5%
512]

4.2 Filter Selection Optimization

This section presents the enhancement of the CLIQUE-based pruning algorithm us-
ing the Lp-norm to select the optimal number of filters. The Lp-norm evaluates the
importance of each filter by calculating the sum of its absolute weights, as shown in the
below equation.

Ifll, = CilfilP) e @3)
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In our experiments, we compare the L1-norm with L2-norm for filter pruning on
the CIFAR dataset. As shown in tables 6 and 7, the L2-norm works slightly better than
the L1-norm. Also, we find L1-norm is an efficient heuristic for filter selection due to
its data-free nature. Furthermore, the L1-norm will reduce some weights to 0, inducing
sparsity in the weights. Moreover, we compare our method with [49, 50] on ResNet-56
as shown in table 8; our method achieves the best results compared to the other pruning
methods.

Table 6. Pruning results of ResNet on CIFAR-10 with Filter Selection Optimization.

Clustering  Number of filters Number of ~ Sparsity Accuracy L1 L2
Method Parameters Norm Norm
CLIQUE  [16, 16, 16, 31,32, 2.65E+05 98.1%  79% 79.53% 79.52%
32, 64, 62, 62]
KMEANS [16, 16, 16, 32,32, 1.96E+05 72.6% 59% - -
20, 40, 44, 44]

Table 7. Pruning results of VGG-16 on CIFAR-10 with Filter Selection Optimization.

Clustering Number of L1 L2
Method Number of filters Parameters  Sparsity Accuracy  Norm Norm
[16, 16, 16, 31, 32, 0 0 82.85% 82.82%
CLIQUE 32, 64, 62, 62] 9.63E+06 65.4% 82%
[16, 16, 16, 32, 32, 0 0 - -
KMEANS 20, 40, 44, 44] 1.08E+07 73.5% 82%
Table 8. Accuracy performance of ResNet-56 on CIFAR-10 under different pruning methods.
Methods % Accuracy drop % Parameters pruned
PFEC [49] 1.73 13.70%
FPGM [50] 0.66 38.71%
FPGM [50] 1.55 59.13%
Ours 0.47 98.10%

4.3  Finetuning

Previously, we pruned CNNs by removing unnecessary filters and evaluating the
pruned version's accuracy and performance. However, in practice, the pruned network
must be retrained and finetuned before being used in production. As a result, in the
following experiments, we run multiple training epochs on the pruned networks and
evaluate their accuracy following the finetuning process. At this stage, we simulate a
more realistic environment using the Places365 dataset.

We finetune the pruned models for all experiments on PLACES365 datasets using
the stochastic gradient descent optimizer and a batch size of 20 epochs. The learning
rate starts at 0.001, and the momentum decays at a rate of 0.9. As a result, the CLIQUE
algorithm consistently generates better results on the PLACES365 dataset, as shown by
the results in table 9.
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Table 9. Pruning results of Fine-tuned ResNet on PLACES365.

Clustering  of Model  Spar-
Method Parame- sity

Number top5 top5 top5 top5 top5 top5

fine- fine- fine- fine- fine-
pruned tuned tuned tuned tuned  tuned

ters lep 4ep 8ep 15ep 16ep
None 243E+07 O 0.849
7.39E-
CLIQUE 2.11E+07 87% 01 0.37 0.55 0.60 0.63 0.86
5.98E-
KMEANS 2.18E+07 90% 01 0.34 0.53 0.61 0.62 0.83
5 Conclusion

In this paper, we present a novel pruning method KCLPruning, which identifies

and removes redundancy in CNN's using complex clustering algorithms based on den-
sity-based, grid-based, and partitional-based clustering methods. The results were fur-
ther improved using automated hyperparameter selection and filter selection optimiza-
tion. The methods' validity was evaluated using a variety of CNN architectures and
datasets. The networks pruned using our approach achieves better results than state-of-
the-art methods. For future work, we will explore more clustering algorithms to com-
press and accelerate CNNs.
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Abstract. Ammunition scrap inspection is an essential step in the pro-
cess of recycling the ammunition metal scrap. Most ammunition is com-
posed of a number of components, including case, primer, powder, and
projectile. Ammo scrap containing energetics is considered to be poten-
tially dangerous and should be separated before the recycling process.
Manually inspecting each piece of scrap is tedious and time-consuming.
We have gathered a dataset of ammunition components with the goal
of applying artificial intelligence for classifying the safe and unsafe scrap
pieces automatically. First, two training datasets are manually created
from visual and x-ray images of ammo. Second, the x-ray dataset is
augmented using the spatial transforms of histogram equalization, aver-
aging, sharpening, power law, and Gaussian blurring in order to com-
pensate for the lack of sufficient training data. Lastly, the representa-
tive YOLOv4 object detection method is applied to detect the ammo
components and classify the scrap pieces into safe and unsafe classes,
respectively. The trained models are tested against unseen data in or-
der to evaluate the performance of the applied method. The experiments
demonstrate the feasibility of ammo component detection and classifica-
tion using deep learning. The datasets and the pre-trained models are
available at https://github.com/hadi-ghnd/Scrap-Classification!

Keywords: ammunition component classification, computer vision, dataset,
deep learning, YOLO, YOLOv4.

1 Introduction

The non-usable ammunition goes through a rotary kiln incinerator (RKI) before
recycling. The safeness of the ammunition scrap should be confirmed before
the process of recycling. If the scrap still contains a considerable amount of
energetics after the incineration process they are considered to be potentially
dangerous. Therefore, the scrap pieces are inspected in order to make sure there is
no energetics left. Manual inspection is a laborious, inaccurate, costly, and time-
consuming step and is prone to human error. Hence, there is a need for a reliable
and effective method to inspect the ammunition scrap automatically. Visual
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imaging and x-ray penetration are beneficial in detecting and discriminating the
energetics remaining in the ammo scrap.

In this study, we have generated two datasets of visual and x-ray ammo im-
ages that are used for training a deep convolutional neural network (DCNN) to
aid with the detection of explosive hazards on metallic ammunition scrap. The
goal is to sort the pure metal scrap from the scrap pieces that contain traces
of explosive hazards. The two classes are named MDAS (Material Documented
as Safe) and MPPEH (Material Potentially Possessing Explosive Hazard), re-
spectively. Due to the lack of a sufficient number of x-ray images, several data
augmentation techniques are applied as a pre-processing step. The representative
YOLOvV4 object detection method [2] is applied in order to train two DCNN mod-
els against the gathered training data. The trained models are evaluated against
the testing datasets according to appropriate measures to verify the effectiveness
of the applied approach.

The remainder of this paper is organized as follows. Section [2| the required
background material about DCNNs and the YOLOv4 method is briefly de-
scribed. Section [3]details the dataset generation and algorithms applied for train-
ing the deep CNN models that are used for ammunition component detection
and explains the criteria used in the classification process. In section [4] exper-
iments conducted for evaluating the trained models are explained along with
the assessment measures used to analyze the performance. Finally, the paper is
concluded in section Bl

2 Background

Object detection and classification is one of the fundamental steps in many ap-
plications of computer vision and video analytics, such as robot vision [T9/13], au-
tonomous driving [18/6/7], and traffic monitoring [T5J9I5ITOIT2IRI25TTI24]. Through-
out the previous years many studies have been published that apply statistical
methods, such as Support Vector Machine (SVM) [20], efficient SVM (eSVM)
[4], Adaboost [26], the Bayesian Discriminating Features (BDF) method [14],
and discriminant analysis [3].

In recent years, deep convolutional neural networks have been popularly used
for many tasks in computer vision, including object detection [16/27]. A Convo-
lutional Neural Network (CNN) is a deep learning algorithm that operates on
an image as the input in order to train several parameters and extract high-level
features for various tasks. The architecture of Convolutional Neural Networks
(CNNs) is well-suited to images in that it captures the spatial and temporal
dependencies by applying appropriate filters. The convolution layers in a CNN
are usually coupled with activation functions and pooling layers for increasing
the non-linearity and size reduction.

One of the most representative object detection approaches in the You Only
Look Once (YOLO) deep learning method was introduced in 2015 [21]. The core
idea of this method is to divide the input image into an S x S grid where each
cell of the grid either represents the background class or is used for the detection
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Fig. 1. The main modules in the YOLOv4 model.

of the object the center of which falls in that cell. At each cell, a predefined
number (B) of bounding boxes are generated along with their corresponding
confidence scores, which indicates how likely the box is to contain an object.
The probability of each object is multiplied with the intersection over union
(IOU) of the predicted bounding box and the ground truth box to calculate
the confidence scores. As many object detection methods, YOLO utilizes the
non-maximum suppression algorithm to remove the repetitive bounding boxes
around each object and only keep the box with the highest score.

Since the development of YOLO at 2015, there have been several versions
and varieties of this model proposed by introducing different improvements and
alternations to the original model. For instance, analyzing the error of the orig-
inal YOLO approach showed a number of flaws including the production of a
large number of localization errors and having a lower recall rate in comparison
with the region proposal-based methods [22]. In YOLOv2 [22] several techniques
are employed in order to improve upon the original version. These techniques
include high-resolution classifier, batch normalization, direct location prediction,
dimension clusters, and multi-scale training. The Darknet-19 network was used
as the classification backbone which consists of five max-pooling layers and 19
convolutional layers.

Later, YOLOv3 [23] was introduced which further improved the robustness
and efficiency of the previous versions. In this version, the softmax layers are
replaced with independent logistic classifiers and the binary cross-entropy loss
is utilized in the classification process. The Darknet-19 model is replaced with
Darknet-53 and detections are performed in three different scales in order to
deal with small objects, which was a problem for YOLOv2. As opposed to the
YOLOv2, which used the softmax function, YOLOv3 uses a multi-label classi-
fication approach and each bounding box can belong to several classes at the
same time.

The latest official version of this method is YOLOv4 which is improves the
performance of the previous version both in terms of mean average precision
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Fig. 2. The system architecture of the YOLOv4 model.

(mAP) and speed. As seen in the fig. [1| the architecture of YOLOv4 consists of
three distinct components, namely, the backbone, the neck, and the head. The
backbone network for feature extraction is the CSPDarknet53 which is used for
splitting the current layer into two parts. The first part passes through the convo-
lution layers while the second part doesn’t and the results are aggregated at the
end. The neck is the intermediate section between the backbone and the head
and contains modified versions of the path aggregation network (PANet) and
spatial attention module with the purpose of having a higher accuracy by infor-
mation aggregation. The head of the architecture represents the dense prediction
block, which is used to locate the bounding boxes and final classification. Similar
to YOLOv3 the bounding box locations and object probabilities are calculated
as the output of the model.

Several additional sets of techniques are applied in YOLOv4 in order to fur-
ther enhance the detection results, which are called bag of freebies and bag of
specials. The bag of freebies consists of various approaches, such as cut mix
and mosaic data augmentation, drop block for regularization, self-adversarial
training, and random training shapes. On the other hand, the so-called bag of
specials is a set of post-processing modules designed to considerably improve
the accuracy with a slight increase in the inference time. This set of techniques
includes different modules including mish activation, cross-stage partial connec-
tions (CSP), the spatial pyramid pooling (SPP) block, the spatial attention
module (SAM), path aggregation network (PANet), and the distance IoU non-
maximum suppression. Figure [2]illustrates the detailed architecture of YOLOv4
object detection method.
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3 Ammunition Component Detection and Classification
Using Deep Learning

We apply one of the most representative deep learning methods to date, the
YOLOv4, for ammunition component classification in visual and x-ray ammo
images. The training data sets are manually created using publicly available im-
ages. Specifically, two training data sets are created corresponding to the training
samples from visual and x-ray images mostly captured from 50 calibers by vi-
sion cameras, transmission x-rays, or back-scatter x-rays. Each image contains
one or more ammo components or full-ammo. The goal is to detect each full-
ammo or ammo component and classify it into one of the two classes, namely
Material Documented as Safe (MDAS) and Material Potentially Possessing En-
ergetic Hazard (MPPEH). These classes indicate whether the scrap piece is safe
or potentially hazardous.

The basic components of ammunition are the case, gunpowder, primer, and
projectile. The case is a usually cylindrical container that holds the ammunition
components together as one piece. Various materials are used for the case, such
as steel, copper, brass, plastic, and paper. The powder is a chemical mixture and
is converted to an expanding gas when ignited. This component of ammunition
is considered to be explosive hazard and should not remain in the scrap during
the recycling process. The primer is an explosive chemical compound that is used
to ignite gunpowder when it is struck by a firing pin. The projectile is the part
of ammunition that is expelled from the barrel which is usually referred to as a
bullet. Figure [3| demonstrates the main components of ammunition.

Typically, ammunition scrap pieces are loose casings, loose projectiles, or
full ammo with case and projectile in place, but missing the primer. Blown out
casings and burst projectiles are also likely to appear among the metallic scrap.
In an ideal scenario, there is no energetics left in the ammunition scrap and
only the metal parts go through the recycling process. However, in real-world
situations, some of the ammunition is not destroyed well enough during the
incineration and the powder remains inside the case. This is considered to be



68 Ghahremannezhad, Liu, and Shi

potentially dangerous as there is an explosive hazard among the metallic scrap.
Therefore, there is a need for inspecting the scrap in order to make sure all
the scrap pieces are safe to go through the recycling process. Here, we have
constructed a dataset of visual images and a dataset of x-ray images with the
purpose of training a deep learning model for the detection and classification of
safe and unsafe scrap pieces.

3.1 Ammunition Component Detection in Visual Images

We have gathered and annotated a sufficient number of visual images of ammu-
nition components and full-ammo to be used as training and testing samples.
The YOLOvV4 object detection method is applied in order to train three classes
of scrap pieces. Specifically, full-ammo, projectile, and case are the three classes
that are used to train the deep CNN. Since there is a good chance of a full-ammo
to contain energetics in its case, we have considered this class to represent the un-
safe samples, called Material Potentially Possessing Energetic Hazard (MPPEH).
On the other hand, the separated casings or projectiles are assumed to be safe
with a high degree of certainty and are classified as Material Documented as
Safe (MDAS).

In addition to the original YOLOv4 structure, we have also used a shallower
lightweight network, called tiny-YOLOv4 as the backbone in order to increase the
computational speed with a negligible drop in the accuracy [17]. The lightweight
structure contains 29 layers compared to the original one with more than a
hundred. The Cross Stage Partial (CSP) model is derived from the DenseNet
architecture, which concatenates the previous input with the current input prior
to reaching to the dense layer. The backbone of the tiny-YOLOv4 includes an
input layer followed by 18 convolutional layers, 9 routes, 3 max-pooling layers,
and a detection layer based on YOLOv3 at the end. Several features of each input
image are extracted by the convolutional layers. There are interchangeable 3 x 3
and 1 x 1 receptive filters striding over the input image to generate feature maps,
which are passed through other layers of the network. The leaky-ReL.U activation
function is applied at the convolutional layers in order to increase the feature
size. Routes are designed to improve the gradient flow throughout the layers.

3.2 Ammunition Component Detection in X-Ray Images

Visual images represent human vision and are not capable of representing some
of the most important aspects of a visual scene. In the case of ammunition scrap,
the visual cameras are not able to capture any information from the inside of the
ammunition casings. However, there might be energetics still remaining inside
of the scrap pieces even if they are separated. Therefore, other visual modalities
such as x-ray penetration can help increase the accuracy and reliability of the
inspection. The x-ray images clearly capture the gunpowder inside the scrap
pieces, which makes them a beneficial resource in the classification of safe/unsafe
samples.
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Fig. 4. The sample images generated using data augmentation. |(a)| and |(b)| are the
results of averaging with kernel sizes 3 and 5, respectively. (d)} |(e)) ((g)| are the

results of power law transformation with gamma values 0.40, 0.45, 0.5, 0.55, and 0.6,
respectively, and is the result of sharpening.

We have gathered a number of x-ray images of ammunition to form a dataset
for training the deep CNN model. Methods based on deep learning require a
large number of training data in order to tune the parameters and learn the
features. Since the number of acquired x-ray images is not sufficient to train a
deep learning model we have applied a number of data augmentation techniques
in order to increase the number of training samples and highlight the features of
interest. We have applied a number of augmentation techniques in the form of
spatial transformations, such as histogram equalization, power law, averaging,
sharpening, negative, and Gaussian blurring on the input x-ray images. Image
sharpening is applied as the addition of the original image and the high fre-
quency for the purpose of enhancing the edges in images with poor qualities.
The gamma power of image intensities is calculated to compute the power law
transformation, which is applied to manipulate the image contrast and perform
calibration. Figure [ illustrates a few examples of data augmentation techniques
applied on an x-ray image.

4 Experiments

We conduct a number of experiments using two image datasets to evaluate the
performance of YOLOv4 deep learning method in ammunition component detec-
tion and classification. The two datasets are created by collecting visual and x-
ray images of ammunition components in addition to full-ammo. Specifically, we
call the first dataset Visual Ammunition Component Detection (VACD),
which contains 162 visual images for training along with 50 images for testing.
Each image contains somewhat between one and thirteen scrap pieces where



70 Ghahremannezhad, Liu, and Shi

each piece is either a full-ammo or an ammunition component such as casing or
projectile.

The second dataset is named X-Ray Ammunition Component Detec-
tion (XACD), which is a collection of 108 x-ray images obtained by applying
data augmentation techniques on the initial 12 images. From the 108 x-ray im-
ages, 72 are used as training samples and the remaining 36 are utilized as test
data. For each visual or x-ray image, the ground-truth bounding boxes are man-
ually annotated and labeled. Table [I] summarizes the three training data sets.

Table 1. The Ammunition Component Datasets

Dataset Imaging modality Training samples Testing samples

VACD Visible 162 50
XACD X-Ray 72 36

For evaluating the quantitative results of the object detection method, three
performance measures are utilized as follows:

PRE = Tp/(Tp + Fp)
REC = Tp/(Tp + FN) (1)
F, =2 x (PRE x REC)/(PRE + REC)

where Tp, Fp, and Fy are the true positive, false positive, and false negative
instances, respectively. PRE, REC, and Fj refer to precision, recall, and F1-
score, respectively.

We used a public github repository [1] for the experiments. For parameter
settings, the batch sizeis 64, learning rate is 0.001, momentum is 0.973, and decay
is selected to be 0.0005. The tiny-YOLOv4 backbone is a CSP that contains CBL,
cross-stage, and residual features along with skip connection layers. It applies
two detectors at the end head. More details can be found at the repository [I].
The first experiments were carried out using the VACD dataset for training a
tiny-YOLOv4 model. Table 2] shows the results of the experiments conducted on
the VACD data in terms of the performance measures. The confidence threshold
is set to 0.25 and the intersection over union (IoU) threshold is computed as
54.63%. The mean average precision for this dataset reached 84.94% and the
total detection time was 6 seconds. Figure [5] shows a number of detection results
of testing the tiny-YOLOv4 model against the images that are unseen during
the training.

The second set of experiments was carried out using the XACD dataset for
training a tiny-YOLOv4 model. Table [3] shows the results of the experiments
conducted on the XACD data in terms of the performance measures. The confi-
dence threshold is set to 0.25 and the intersection over union (IoU) threshold is
computed as 50%. The mean average precision for this dataset reached 99.92%
and the total detection time was 8 seconds. Figure [f]illustrates sample detection
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Table 2. The quantitative results of testing tiny-YOLOv4 on the VACD data

TP FP FN Precision Recall Fl-score

Fulllammo | 159 50 21  76.08% 88.33% 81.75%
Casing 92 104 10 46.94% 90.2% 61.74%

Projectile | 84 25 9 77.06% 90.32% 83.17%
Total 335 179 40 65% 89% 75%

li.. =T

Fig. 5. Sample detection and classification results of applying tiny-YOLOv4 on the
test images of the VACD dataset.

results of testing the tiny-YOLOv4 model against the images that are unseen
during the training.

Table 3. The quantitative results of testing tiny-YOLOv4 on the XACD data

TP FP FN Precision Recall Fl-score

Full-ammo | 499 21 1 95.96%  99.8%  97.84%
Casing 41 6 7 87.23%  85.42% 86.32%

Projectile | 18 0 4 100% 81.82% 90%
Total 558 27 12 95% 98% 97%

The hardware specification used for the experiments is a 3.4 GHz processor,
16 GB RAM, and an Nvidia GTX-745 graphics processing unit (GPU). The time
spent on the training of the tiny-YOLOv4 model using the VACD dataset for
6000 iterations was approximately four hours. Figure [7]illustrates the growth of
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fmjnu.

Fig. 6. Sample detection and classification results of applying tiny-YOLOv4 on the
test images of the XACD dataset.

mean average precision (mAP) in terms of training iterations using the VACD
data.

Our findings in this study demonstrate the need of deep learning models
for a considerable amount of data and computational resources in comparison
with the traditional methods. Additionally, however necessary for supervised
learning, the manual labeling and annotating the collected data is a tedious
and time-consuming process. The extracted features are not easily interpretable
by human experts and the complexity of numerous hidden layers in the deep
network architectures increases as the model uses more parameters. Another
drawback of the deep learning methods is their low ability of generalization.

Despite the limitations, when tested on data similar to the training samples,
a well-trained deep model demonstrates high performance in the task that it is
trained for. All the YOLOv4 models trained using the collected datasets showed
great accuracy in detecting ammunition components and full-ammo when tested
against visible or x-ray images. The YOLOv4 method proved to be fast enough
for use in applications with real-time requirements. Visual and x-ray imaging
systems can be deployed on the inspection site. The trained models can be
applied in real-time during the ammunition metallic scrap inspection in order
to discriminate the Material Documented as Safe (MDAS), which involves the
projectile and casing samples, and Material Potentially Possessing Energetic
Hazard (MPPEH) which refers to the full-ammo class. The potentially dangerous
scrap pieces should be separated for further inspections.
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Fig. 7. changes in the loss and mAP in 6000 iterations of training tiny-YOLOv4 against
the VACD data.

5 Conclusions

The representative YOLOv4 object detection method is applied for the task
of ammunition component detection and classification in images of the visible
and the x-ray range. The purpose of this classification is to aid with the au-
tomatic inspection of ammunition scrap in the process of reducing dangerous
properties prior to recycling. Two image databases are gathered and annotated
for the task of object detection. First dataset, Visual Ammunition Component
Detection (VACD), is a set of visible images of ammunition components and full-
ammo pieces. The second database, X-Ray Ammunition Component Detection
(XACD), is a set of x-ray images of ammunition components, which is enhanced
by several data augmentation techniques. The x-ray images are able to illustrate
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the insides of the ammunition casings, which helps indicate whether the scrap
piece contains any energetics or not. As a general rule of thumb, we consider
full-ammo to be explosive hazard due to the possibility of remaining energet-
ics inside. The potentially dangerous scrap pieces should be separated and go
through the incineration process again before being moved to the recycling unit.
The experimental evaluations using the collected datasets demonstrate the feasi-
bility of the YOLOv4 method in object detection and classification in real-time
applications.
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Abstract. Transfer learning networks have gained massive popularity
recently. The mainstream transfer learning architecture consists of two
parts: the first part is a feature extractor to extract features from the in-
put data, and the second part is to process those extracted features. The
feature extractor plays a decisive role in the performance of the transfer
learning network. Despite its importance, the study about the improve-
ment of feature extractor for transfer learning networks is lacking. Here
we scrutinized the enhancement of the feature extractor via structural
modifications. To this end, we have taken three structural modification
methods into consideration. They were simplifying the feature extractor
by deleting its last few layers, fine-tuning its first few layers, and fine-
tuning its last few layers, respectively. The results showed that structural
modifications can improve the feature extractor capability and enhance
the transfer learning network performance subsequently. Our specific ex-
amples showed that the image classification accuracy of a well-performed
transfer learning network was improved by 2.6% maximally. Without any
additional computational cost, the accuracy was increased by 0.77%. We
conclude that the performance of feature extractor in transfer learning
network can be improved via structural modifications.

Keywords: Transfer learning - Feature extractor - Structural modifica-
tion - Machine learning

1 Introduction

In recent years, significant progress has been made in deep learning tasks due
to the availability of the state-of-art convolutional neural networks (CNNs) [1-
3]. In addition, increasingly powerful computational resources have led to the
widespread use of CNNs in various applications. The performances of CNNs are
highly correlated with the amount of training data. Those widely adopted CNNs
were normally trained using large datasets, e.g., the ImageNet dataset [4].How-
ever, in real-world applications, the volume of training data is often limited [5].
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Thus, the performances of CNNs decline markedly in some practical applications
where training data is limited.

In contrast, transfer learning networks are robust against the shortage of
training data [6]. The transfer learning approach reuses a source network that
was already well-trained using enough images (i.e., the source dataset). In the
transfer learning process, the first n layers of the well-trained source network
are frozen and transferred to an m-layer target network (m > n). Then, the
remaining (m-n) layers in the target network are trained by a relatively small
target dataset. The transferred part functions as a strong feature extractor [7,
8]. The feature extractor’s ability is directly transferred from the source network
to the target network without further training. Therefore, a transfer learning
network can obtain a good performance without the availability of a large amount
of training data. With this special feature, transfer learning has gained popularity
in various fields, and many studies have demonstrated its extremely encouraging
performance with limited training data [5,9, 10].

The feature extractor draws features from the input data, and the training of
the rest of the transfer learning network is based on the features extracted. An
effective feature extractor is the key component in a transfer learning network. A
poor feature extractor will lead to a drastic network performance deterioration
[7]. This is referred as “negative transfer”in literature [7]. Despite the critical
importance of the feature extractor, there is a lack of research in the improve-
ment of feature extractor performance. Previous studies have shown that modifi
cations of network structure can significantly enhance the CNN performances
[11,12,3,1]. Inspired by these studies, in this paper we examined how structure
modification of a feature extractor could improve its performance.

Yosinski et al.the generality versus specificity of the feature extractor of a
CNN. They found that transferability is negatively impacted by the specializa-
tion of higher layers to their original task at the expense of performance on
the target task [8]. In a radar target detection study, Bralich et al. also found
that the transfer learning network performance would deteriorate if the features
were extracted from the deeper layers (e.g., four or more layers) [13]. Inspired by
these research results, this study examined how simplification of the structure of
a feature extractor can adversely improve the learning performance of a transfer
learning network. We removed the last part of the feature extractor to avoid the
over extraction of the inappropriate features.

In transfer learning applications, fine-tuning is also widely used to enhance
the performance of a feature extractor [14,15]. This method frees the parame-
ters in the feature extractor and turns them from frozen to trainable. During the
training process, the feature extractor takes the frozen parameters as the initial
values. Then, the parameters are trained jointly with other raw parameters using
the target data. As a result, fine-tuned layers are shaped by the target dataset,
and the features of the target domain are extracted. Since the last few layers
of the feature extractor are more focused on the source domain than the front
layers, fine- tuning the later layers is sufficient [16, 17, 15]. Although this strategy
is widely used, how exactly the fine-tuning of these layers will affect the learn-
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ing performance has not been well studied. The second structure modification
addressed in this paper aims to answer this question.

Filters from the first layers of a feature extractor are like Gabor filters or
color blobs that focus on extracting general features. Thus, the first layers of
a feature extractor can be safely applied across domains [8]. However, Aljundi
and Tuytelaars pointed out that domain shift effects occur at the very first layer
in an unsupervised CNN [18]. Shirokikh et al. also found that fine-tuning the
first few layers in a U-net transfer learning network significantly outperformed
the fine-tuning of its last layers in a recent MRI segmentation study [19]. They
indicated that the first layers contain more source domain-oriented information
than the last layers, once a U-net is well-trained. For transfer learning networks
used for image classification tasks or similar super-vised network structures, to
our best knowledge, no study has investigated the specificity/generalization of
the first layers in the feature extractor. Thus fine-tuning the first few layers of
the feature extractor is the third modification to be considered in this study.

The effectiveness of these three structural modifications to the feature extrac-
tor was examined in this paper. The performance of the feature extractor was
measured according to the image classification accuracy of a transfer learning
network with the feature extractor. The results obtained demonstrated that all
three modifications can improve network performance. The simplification strat-
egy enhanced the feature extractor slightly as well as reducing the computational
expense. Fine-tuning the last layer of the feature extractor improved the feature
extractor maximally with more than two million fine-tuned parameters. Fine-
tuning the first few layers also exhibited an improved performance, in addition
to the significant reduction of the number of tuned parameters. Hence, we con-
clude that the proposed structural modification methods can make the feature
extractor learn better and enhance the network performance.

2 Datasets

Both the training and testing images were drawn from an open-source dataset
containing classified images [20] . Each category involved more than 2000 training
images and approximately 500 testing images. In the training dataset, there
were 4000 images randomly and evenly selected from four specific classes, i.e.,
the “buildings,” “forest,” “glacier,” and “sea” categories. The testing dataset
contained 1,917 images from the selected four classes as well. There was no
overlap between the training and testing images or different types of images,
and all images are 100 x 100-pixel RGB images. Sample images from the four
classes are shown in Fig 1.

3 Proposed Transfer Learning Network

3.1 Source Network and Feature Extractor

In this study, VGG16 was employed as the source network, and the proposed
feature extractor was a part of VGG16. VGG16 is one of the most popular source
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Building Forest Glacier

Fig. 1. Sample images from four classes

networks in transfer learning research community [5,16,21] and can generalize
well to extensive datasets [3].

VGG16 was well-trained using a subset of ImageNet. This subset contained
1.2 million RGB images from 1000 categories. In VGG16, the image was passed
through a bunch of convolutional layers with 3 x 3 convolutional filters, which
was the smallest filter able to capture the notion of relative position. The con-
volution stride was set to 1 pixel. The spatial pooling was executed by five
max-pooling layers. The max-pooling filters were in a 2 x 2-pixel window with a
stride of 2. Two fully-connected layers were following the last pooling layer, and
each fully-connected layer involved 4096 neurons. The SoftMax classifier, i.e.,
the last layer, contained 1000 channels because VGG16 was designed to classify
1000-class images.

In VGG16, over 119 million parameters were in the last three layers, repre-
senting approximately 88% of all parameters. To avoid an excessive number of
parameters, the feature extractor employed in this study was the VGG16 net-
work without the last three layers. As shown in Fig 2, the target feature extractor
applied was the first 18 layers of VGG16, i.e., a combination of all convolutional
and max-pooling layers.

3.2 Architecture of Proposed Transfer Learning Network

The evaluation of the feature extractor modifications was based on the perfor-
mance of the proposed transfer learning network. The proposed network archi-
tecture is shown in Fig 2. The first part of the proposed network was the feature
extractor. The feature extractor was followed by a global average pooling (GAP)
layer, one fully-connected layer, and one SoftMax classifier. These three layers
and the feature extractor comprised the proposed transfer learning network. As
shown in Fig. 2, the layers in the solid box replace the layers in the dashed box.

The GAP layer was employed to flatten the tensor from the feature extractor,
where each channel of the feature tensor was averaged to a value. Thus, the tensor
size was reduced considerably and overfitting was constrained. A smaller 512-
neuron fully-connected layer came after the GAP layer. The final layer was the
SoftMax classifier layer whose output is a 1 x 1 X 4 vector, where each element
represented a single image category.
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Table 1. Structure and parameters distribution of the proposed transfer learning net-

work

Blocks |Network layers Output dimension|Parameter number in the layer
Input layer 100x100x3 0

1 Convolutional layer 1 100x100x 64 3x9x644+64=1792

1 Convolutional layer 2 100x100x 64 64x9x64+64=36928

1 Pooling layer (Max-pooling) |50x50x 64 0

2 Convolutional layer 3 50x50x 128 64x9x128+4128="73856

2 Convolutional layer 4 50x50x 128 128x9x128+4128=147584

2 Pooling layer (Max-pooling) |25x25x128 0

3 Convolutional layer 5 25x25x256 128 x9%256+4256=295168

3 Convolutional layer 6 25x25%256 256 x9x256+4-256=590080

3 Convolutional layer 7 25x25%256 256 x9x256+256=590080

3 Pooling layer (Max-pooling) |12x12x256 0

4 Convolutional layer 8 12x12x512 256x9x512+512=1180160

4 Convolutional layer 9 12x12x512 512x9x512+512=2359808

4 Convolutional layer 10 12x12x512 512x9x5124-512=2359808

4 Pooling layer (Max-pooling) |6 xX6x512 0

5 Convolutional layer 11 6x6x512 512x9x512+512=2359808

5 Convolutional layer 12 6x6x512 512x9x5124-512=2359808

5 Convolutional layer 13 6x6x512 512x9x512+4-512=2359808

5 Pooling layer (Max-pooling) |3x3x512 0

Trainable|Global average pooling layer|512 0

Trainable|Fully connected layer 512 512x512+512=262656

Trainable|SoftMax classifier 4 512x4+4=2052
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Before training, the parameters in the fully-connected layers and SoftMax
classifier were initialized using the default kernel initializer [22], and the default
bias was set to be 0. Other parameters in the feature extractor were frozen and
untrainable. The parameter distribution in the proposed network was shown in
Table 1. The trainable parameters counted less than 2% of all parameters. From
this table, the feature extractor was divided into five blocks, where two or three
jointed convolutional layers and the following max-pooling layer comprised a
single block.

3.3 Training Settings

The goal of the training process was to reduce the loss function as much as
possible. The sparse categorical cross-entropy loss function has been highly rec-
ommended for classification tasks when data in different categories are mutually
exclusive [23]. Thus, the sparse categorical cross-entropy loss function was em-
ployed in this study. The RMSprop optimizer, demonstrating fast convergence
[24], was implemented.

In training, the learning rate was always set to 0.001, the default value of the
RMSprop optimizer. The number of epochs in all training cases was set to 20.
In experiments, we found 20 epochs can lead to a well-trained transfer learning
network without requiring excessive training time.

4 Feature Extractor Modifications

In this section, the structural modifications applied to the feature extractor are
described in detail.

4.1 Simplifying the Feature Extractor

In the simplifying modification, the last few layers of the feature extractor were
deleted to eliminate the undesired features. The goal was to improve the feature
extractor’s generalizability without sacrificing its performance. During the sim-
plifying process, the last convolution layer was deleted first. Then, the last six
convolution layers were removed one by one. In this process, other parts of the
proposed network remained the same. Fig. 3 shows the details of the simplified
feature extractor with the last convolutional layer removed.

4.2 Fine-tuning the Last layers of Feature Extractor

Fine-tuning the last convolution layers in the feature extractor was considered in
this subsection. In this approach, the parameters in the last convolutional layers
of the feature extractor were converted from frozen to trainable, and these pa-
rameters were initialized by the values inherited from VGG16. Other trainable
parameters were initialized randomly by the default glorot_uniform kernel ini-
tializer with a bias of zero. Both kinds of parameters were trained together using
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Fig. 3. Simplified the feature extractor with the last convolutional layer removed

the target training data. The modified feature extractor with the fine-tuned fi-
nal layer were shown in Fig 4. Table 1 shows that the last convolutional layers
from the feature extractor contain over two million parameters each. Although
fine-tuning more layers would be more beneficial, handling such a large num-
ber of parameters required a massive amount of training data. The available
training data was limited. No more than two layers were fine-tuned to avoid
overfitting[14].

4.3 Fine-tuning First layers of Feature Extractor

Fine-tuning the first few layers is presented in this subsection. Fig 4 shows the
proposed network and feature extractor with the fine-tuned first layer. Compared
to fine-tuning the final part of the feature extractor, fine-tuning the first part
can dramatically reduce the number of parameters to be fine-tuned. Shirokikh et
al. pointed out that U-net performance improvement was notable when the first
two layers of the network are fine-tuned [19]; thus, we considered fine-tuning the
first one or two layers.

5 Results

This section describes the impact of the three structural modifications on the
performance of the feature extractor. These three modifications were mutually
exclusive to each other. The feature extractor performance was represented by
the classification accuracy obtained on the testing dataset. To ensure the reliabil-
ity of the results, the experiment was repeated five times for each case. Then, the
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Fig. 4. Proposed network with fine-tuned the first and the last convolutional layer in
the feature extractor

average accuracy was taken as the final classification accuracy. In addition, the
accuracy of the proposed network was compared to the classification accuracy
obtained by a network with an unmodified feature extractor. To visualize the
impact of features by the considered modifications, some features from different
parts of the extractor are also illustrated.

5.1 Results on Simplified Feature Extractor

The classification accuracies varied as different layers were removed from the
feature extractor as Table 2 shows. When the final convolutional layer was
cropped, classification accuracy increased from 94.23% to 94.96%, a relatively
0.77% enhancement. It is the best network performance was obtained by simpli-
fying the feature extractor. Cropping the last block (three convolutional layers)
was also beneficial, i.e., a small enhancement to classification accuracy was ob-
tained (94.23% to 94.7%). However, when two convolutional layers were cropped,
network performance was reduced slightly. Cropping more than three layers neg-
atively affected the network. In the worst-case scenario, classification accuracy
was reduced from 94.23% to 89.21% when the last five convolutional layers were
removed.

5.2 Results on Fine-tuning the Last Part of the Feature Extractor

The performance of the proposed transfer learning network with the last few
layers fine-tuned in the feature extractor is shown in Table 3. Fine-tuning the
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Table 2. Image classification accuracy vs. number of removed layers from the feature
extractor

Deleted layers Accuracy |Relative change
No modification 0.9423 0

Crop 1 conv layer 0.9496 +0.77%
Crop 2 conv layers 0.9370 -0.56%
Crop 3 conv layers (crop 1 block) | 0.9470 +0.50%
Crop 4 conv layers 0.9281 -1.51%
Crop 5 conv layers 0.8921 -5.32%
Crop 6 conv layers (crop 2 blocks)| 0.9189 -2.48%

last convolutional layer in the feature extractor obtained the best network per-
formance. Here, classification accuracy increased from 94.23% to 96.68%, a rel-
atively 2.6% improvement. To demonstrate the impact of the modifications on
extracted features, a comparison of the features from the last layer before and
after fine-tuning are shown in Fig 5. As shown in Fig 5, the features were trans-
formed significantly. Most of the non-zero pixel values were changed to zeros,
and only a single non-zero value was left. However, when an additional layer
was fine-tuned, a dramatic drop in accuracy was observed. The classification
accuracy was reduced by 23.39%.

Table 3. Classification accuracy vs. fine-tuning last layers of feature extractor

Deleted layers Accuracy|Relative change
No modification 0.9423 0
Fine-tuning the last layer 0.9668 2.60%
Fine-tuning the last two layers| 0.7219 -23.39%

5.3 Results on Fine-tuning the first layers of the Feature Extractor

The accuracy of the proposed network varied when the feature extractor’s first
layers were fine-tuned. When the first layer was fine-tuned, image classification
accuracy was improved from 94.23% to 95.28%. To visualize the adjustments of
the extracted features, a comparison of the features from the first layer before and
after fine-tuning is shown in Fig.6. In terms of features, the original outputs of the
first layer were primarily focused on the building’s outline and grayscale. Some
features were overlapped. After fine-tuning, the output of the first layer was more
diverse, and no feature overlapped others. By fine-tuning an additional layer,
network performance was optimized and the classification accuracy increased
from 94.23% to 94.53%. The effects of optimization were not as obvious as that
of fine-tuning only the first layer.
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Original output of the last layer Output of the last layer after the fine-tuning

Fig. 5. Comparison of features from the last convolutional layer

Table 4. Classification accuracy vs. fine-tuning first layers of feature extractor

Deleted layers Accuracy|Relative change
No modification 0.9423 0
Fine-tuning the first layer 0.9528 1.11%
Fine-tuning the first two layers| 0.9453 0.32%

Original output of the first layer Output of the first layer after fine-tuning

Fig. 6. Comparison of features from the first convolutional layer
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6 Discussion

In this study, we demonstrated the substantial impact of the feature extractor
in the transfer learning network performance and developed three modification
methods to improve the learning ability of the feature extractor. We found that
all three structural modifications can improve the feature extractor’s perfor-
mance. Given the different computational resources required, researchers can
adjust the modification methods according to their conditions.

Cutting out the last layer or the last block can enhance the feature extrac-
tor performance. The results proved the feature evolution in the previous study
[8]. The experiments indicate that simplifying the network properly (delete un-
appropriated features and save the appropriate ones) can improve the feature
extractor’s capability. Cropping more than three layers negatively affected the
network significantly. It suggested the features from the shallower layer cannot
represent the input properly. To our best knowledge, it is the first to use the
simplifying strategy to enhance the feature extractor. The feature extractor sim-
plifying strategy can reduce the required computational source for training. This
optimization on the feature extractor is highly recommended when the compu-
tational resource is limited.

Fine-tuning the last convolutional layer can enhance the feature extractor
performance maximally. This approach converted the extracted features to be
more related to the target domain. Thus, feature processing could better exploit
these extracted features. However, when an additional layer was fine-tuned, the
test accuracy drops dramatically. When the last two layers were fine-tuned, more
than 4 million parameters were made trainable. The limited training data cannot
train such amount of parameters and overfitting occurred. The key is achieving
a balanced trade-off between overfitting and fine-tuning. This method increases
the computational cost significantly. This method is recommended when the
feature extractor performance is the first priority.

Fine-tuning the first layers is a benefit to the feature extractor. By fine-tuning
the first convolutional layers, we observed an improvement to the classification
accuracy of 1.11%. The feature maps show the fine-tuned layers can extract more
general features. In contrast to the mainstream perception, we proposed that
even at the very first layer, the extracted features are already source-domain-
oriented. Fine-tuning the first layers can center the extracted features to the
target domain. Compared with another fine-tuning strategy, the computational
cost is significantly reduced in this method. Therefore, we consider that low-level
features extracted from the first part of the feature extractor can be fine-tuned
more efficiently than high-level features. To all we know, this is the first study
on fine-tuning the first layers of the feature extractor in a CNN-based transfer
learning network. This provides researchers using similar networks an efficient
method to enhance their networks.

The results indicate the extracted feature mismatching limits the feature ex-
tractor performance even then network based on the extractor is well-trained
and well-performed. This study proposes three novel structural modifications to
make the feature extractor extract features better represent the input. All three
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modifications are direct modifications to the extractor structure. The modifi-
cation implementations are straightforward. This study provides practical ways
to enhance the feature extractor. Researchers applying transfer learning net-
works to practical applications can apply the findings to optimize their feature
extractor.

7 Conclusion

In this work, the experimental results demonstrate that the structural modifi-
cations on the feature extractor can improve its performance. We found that
fine-tuning the last convolutional layer of the feature extractor improved its per-
formance more than the other two modifications. However, in this case, over
two million parameters are fine-tuned, and this incurs high computational costs.
Fine-tuning the first convolutional layer of the feature extractor improved classi-
fication accuracy by 1.11%. Here, only 1792 additional parameters are required
for training. This optimization is very efficient. For the simplification strategy,
the feature extractor could be enhanced without additional parameters. The
experimental results confirm the importance of these feature extractor modi-
fications. The results indicate the proposed structural modifications have the
potential to enhance the feature extractors and transfer learning networks in
practical applications. In the future, we will further investigate the relationship
between transfer learning network performance and the degree of freedom on
network parameters and training data.
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Abstract. Various e-commerce use cases that companies implement in
applications rely on personal data of customers. Privacy and data pro-
tection play an important role when discussing the usage of personal
customer data resulting in a conflicting demand between data collection
and data protection. Researchers have found a promising solution to
this problem: the generation of synthetic data which is not connected to
real people. In this paper, we use the deep learning architecture Condi-
tional Tabular Generative Adversial Network (CTGAN) to synthesize e-
commerce data. Especially the categorical relationships between columns
of e-commerce data include fixed dependencies, where e.g. an entry in
the sub-category column is defining the entry in the category column as
well. These specific characteristics result in the necessity to evaluate the
suitability of the CTGAN architecture for synthesizing e-commerce data
which is the focus of this paper. We present a new similarity measure
for synthetic and original datasets that focuses on categorical correla-
tions: the Cramer’s V deviation (CV-deviation). In our experiments, we
create synthetic e-commerce data from a publicly available dataset us-
ing CTGAN. We use an existing and our newly developed CV-deviation
measure in hyperparameter selection and compare the outcomes. By in-
corporating C'V-deviation into the performance metric, we manage to in-
crease the ability of CTGAN to preserve correct categorical relations by
63%. Despite the enhancements the evaluation of the synthetic datasets
shows that there is still room for improvement of the overall architecture
because it seems difficult for the CTGAN model to efficiently learn all
categorical constraints automatically.

Keywords: CTGAN - Categorical Relations - E-Commerce - C'V-deviation.

1 Introduction

One of Amazon’s biggest success factors has been its personalized recommenda-
tion system, which is based on massive amounts of data involving transactions
from millions of customers [27]. Recommendation systems in general need a lot
of data to learn the relationships between products, preferences and customer
segments. Not only in the recommendation systems sector, but also in many
other e-commerce areas, the analysis of customer data is a key element, e.g. in
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detection of fraud, in forecasting and inventory management. To solve the in-
creasing demand new ways and models to create e-commerce data are urgently
needed [17]. Due to its personal and sensitive nature, handling customer data
brings its own challenges: How can people’s personal data be protected, when
it is used for analysis [7]? How can sensitive data be shared and multiplied? A
promising solution to this problems is synthetic data: The generation of new data
containing as many properties and information of the original data as possible
while not being linked to the same individuals present in the original dataset
[2]. Synthetic data research is an important area that is becoming increasingly
popular throughout the machine learning field [18].

Especially in Europe, with the new data protection law GDPR, research
achievements in synthetic e-commerce data are of central importance: The GDPR
has led to a decline in usable data and seems to affect the revenues of the Eu-
ropean e-commerce platforms [8]. The ability to use synthetic data to preserve
information content while effectively protecting customer privacy could mean a
breakthrough in European e-commerce market. Especially smaller players who
are uncertain about the risks of using customer data, could benefit from the
usage and sharing of synthetic data.

One architecture that is widely known due to numerous successes in generat-
ing so-called “deep fakes”, i.e. deceptively real synthetic images, videos or audio
content, is the Generative Adverisal Network (GAN) [24]. The Conditional Tab-
ular Generative Network (CTGAN), a specialization of the GAN architecture for
synthesizing tabular data was presented in 2019 by Lei Xu et al. in 'Modeling
Tabular Data Using Conditional GAN’ [26]. A first evaluation of the CTGAN
in generating synthetic insurance data focusing on datasets with scalar values
achieved promising results [14].

In this paper, we address the question of whether the CTGAN architec-
ture can provide promising results in the area of synthetic e-commerce data.
E-commerce data contains many columns with categorical data such as product
categories or postal codes. The correlations between products and other columns
with categorical data is central to recommender systems [20].

We evaluate synthetic e-commerce datasets along several dimensions and
pay close attention to the maintenance of important relationships between the
columns with categorical data. The similarity of categorical correlations between
synthetic and original datasets is measured by the newly proposed measure
Cramer’s V Deviation (CV-deviation).

In our experiments, we generate synthetic data from a publicly available e-
commerce dataset using CTGAN and implement a grid search that optimizes a
subset of CTGAN’s hyperparameters in respect to the e-commerce data. Addi-
tionally to evaluating a base approach, we include the CV-deviation measure in
the hyperparameter training of the CTGAN model to investigate if this change
of focus in the hyperparameter training has an effect on the evaluation parame-
ters. By incorporating C'V-deviation into the performance metric of the hyper-
paramter training, we can increase the the average categorical integrity of the
synthetic e-commerce dataset by 17 percentage points.
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The following Section 2 contains preliminaries on the CTGAN architecture.
Subsequently, we present related work to this paper in Section 3. Section 4
displays our method including the formula for C'V-deviation and introduces our
implementation process. Section 5 discusses the evaluation of the synthetic e-
commerce datasets. Lastly, Section 6 presents the central findings of this paper
and points out further research directions.

2 Preliminaries

The GAN architecture was published in 2014 by Ian Goodfellow and his team, it
consists of two artificial neural networks, the generator G and the discriminator
D, which resemble two players playing a minmax game against each other [9].
The generator G produces synthetic data samples of a desired instance from
a random noise source. Alternating with original samples from the real data
distribution, these synthetic samples are fed into the discriminator network D,
which determines whether the input belongs to the real dataset. During training
the generator learns to create more realistic instances, while the discriminator
tries to identify those generated instances with greater accuracy [9].

The CTGAN, whose architecture is illustrated in Figure 1, consists of two
neural networks a generator G and a critic C' that corresponds to the discrim-
inator in the classic GAN architecture. The CTGAN’s critic scores either 10
real or generated data series according to the network’s estimated authenticity
of the data. There are two main innovations adapted to the generation of syn-
thetic tabular data: mode specific normalization and a conditional training by
sampling [26].

Mode specific normalization is used to transfer the values of the continuous
columns into a combination of a scalar value and a one-hot vector that increases
the ability of CTGAN to create continuous columns with multiple modes during
generation process. Figure 1 shows two datasets as input to the critic, one con-
sisting of 10 rows of real data samples and the other consisting of 10 synthetic
data rows. The continuous values of each row in those sets are represented us-
ing a mode-specific normalization and their categorical values are represented as
one-hot vectors.

Another problem with GANs when creating tabular data is the highly im-
balanced categorical columns, i.e., a column that consists of 90 % of one major
category. CTGAN’s conditional training approach applies a specific column with
categorical data and a specific category from that column as a constraint to the
data generation and the sampling process. Through an integration in the loss
function, CTGAN learns to implement this condition during training. Figure 1
illustrates the influence of this condition as a conditional vector for the gener-
ator G and as a sampling filter for the input of the critic C'. The column that
is affected by this condition is chosen at random. To choose the category of
the selected column as a condition, a probability mass function is calculated in
which the calculated probability mass of each category is the logarithm of the
frequency of that category in the selected column. To ensure that the infrequent
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Fig. 1: An illustration of CTGAN architecture.

categories of this selected column are considered to a larger extent, the category
for the condition is randomly determined from this calculated probability mass
function.

In addition to these enhancements, CTGAN also utilizes recent advances in
GAN training such as WGAN-GP, an improved Wasserstein GAN with gradient
penalty [10].

3 Related Work

Since its publication in autumn 2019, CTGAN has been combined with other ar-
chitectures and evaluated with different datasets. Rosenblatt et.al. (2020) made
the architecture differentially private, a formalization of privacy [6], by combining
CTGAN with DP-SGD and PATE technique [19]. Similar to the DPGAN ap-
proach [25], applying DP-SGD to CTGAN adds random noise to the discrimina-
tor and prunes the norm to achieve differential privacy [19]. The PATE-CTGAN
approach is also inspired by a similar approach on the GAN architecture [12],
the original dataset is divided into subsets and each of the subsets has its own
generator and discriminator network [19].

CTGAN has been evaluated on other types of table data and achieved promis-
ing results. Similar to our approach, Kuo et al. made small changes to the original
CTGAN architecture that promise advantages for generating insurance datasets
[14]. Their workflow involves using true data frequency instead of log-frequency
when choosing a value for the condition that influences the generator and the
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sampling process. In 2021, Min Jong et.al. evaluated the CTGAN and the TGAN
in their ability to generate synthetic EEG data. In their evaluations, the CTGAN
achieved higher similarity scores than the TGAN, while the machine learning
performance of the two generative architectures remained similar [15]. In order
to obtain better training data for the evaluation of stability of power systems,
Han et al. use an approach that first creates tabular data with CTGAN, which
is then further processed. The data created with this framework is analyzed with
different methods and achieves good values in several metrics [11]. None of the
above CTGAN evaluations focus especially on relationships between columns
with categorical data, which are in particular important in e-commerce data
where, for example, products are divided into different categories that must be
preserved in the synthetic data.

4 Dataset

For our synthesis of e-commerce data, we use the “Superstore” dataset that
contains data on purchases from 2014 to 2017 from an U.S. online store with
various offerings ranging from books to furniture or other household items. To
increase transparency, we choose a dataset which is publicly available on the
Kaggle platform. The dataset does not appear to be anonymized [23].

The unprocessed “Superstore” dataset consists of 9,994 rows and 20 columns
with different information. In order to use the “Superstore” dataset for synthesis,
some information duplicated with the respective ID such as Product Name and
Customer Name are deleted. The “Superstore” dataset has 13 columns with
categorical data, the remaining 4 columns are continuous. The dataset includes
793 individual customers who ordered 1862 different products in 5,009 individual
orders. All products can be divided into 17 subcategories, which in turn are
divided into the three categories Furniture, Office Supplies and Technology [23].

5 Method and Implementation

In this section, we describe our method and the steps in our implementation.
We start by introducing C'V-deviation, our new evaluation metric for synthetic
datasets to better incorporate columns with categorical data. We then display
the evaluation methods we use to analyze the synthetic e-commerce datasets.
Furthermore, we describe the general implementation of training the CTGAN
models. Lastly, we present our technical setup and performed grid search.

5.1 Cramer’s V Deviation

In order to achieve higher similarity between synthetic and original e-commerce
data, we intend to use a performance metric that especially supports categorical
integrity of synthetic data. The Cramer’s V is a measure of statistical associ-
ation between two categorical variables, it returns a value between 0 and 1,
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with a higher value representing a greater correlation of the two variables. The
Cramer’s V with Wicher Bergsma correction (CV) for column pair (D;, D;) with
categorical data and number of categories |D;| and |D;| in table T with Number
of rows N, is calculated as follows [4]:

b2
CV = - ? )
min(k — 1,7 — 1)
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x? = chi-square test of independence [13] of (D;, D;),
k= |Dl|7 r = |l)j|7 n = NT

We define the corrected Wicher Bergsma Cramer’s V of a column pair with
categorical data j € Pa(Dq,...,Dn,) of tabular dataset T' with columns with
categorical data D = {Dq, ..., Dy, } as: CVr(j).

To create a performance metric using CV as a base, we combine the Cramer’s
V with Wicher Bergsma correction with the Root Mean Squared Error [5] and ob-
tain the Cramer’s V Deviation (CV-deviation). The CV-deviation of real table T
and synthetic table T, with columns with categorical data D = {D;, ..., Dn,}
and (|D] > 1) is calculated as follows:

1 . .
CV-deviation(T, Tsyr) = P5(D)| E (CVr(j) = CVr,,,(5)*  (2)
JEP2(D)

The CV-deviation measures the difference of the statistical correlations between
all pairs from the columns with categorical data in the synthetic table T, to the
corresponding correlations in the real table T. The CV-deviation is a similarity
measure for a pair of real and synthetic tabular data and therefore can only
be applied to datasets that have the same columns with categorical data. The
CV-deviation can take 0 as the lowest result and 1 as the highest value, the
closer the result is to 0, the more similar are the statistical relationships among
the columns with categorical data with respect to the CV value. If we were to
calculate the C'V-deviation from a dataset to itself, the result would be 0.

5.2 Evaluation Method

We evaluate the synthesized e-commerce datasets in detail and compare them
with the original dataset. Therefore, we examine the similarity of column distri-
butions of synthetic datasets to the column distributions of the original “Super-
store” dataset looking at overall distribution measures, upper and lower bounds
for continuous columns and number of categories for columns with categorical
data. We also inspect the integrity of relationships between column pairs with
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categorical data in our synthetic datasets. Some columns with categorical data
in e-commerce data have a special relationship to each other that does not allow
new combinations in the synthetic data, i.e., a cellphone always belongs to the
sub-category technology and not furniture. Detection of column pairs with this
categorical integrity requires expert knowledge about the relationships between
columns, which is not always available. We furthermore compare the Cramer’s
V values of the synthetic datasets with the results of the original dataset to
display an overview of the similarity of categorical statistical correlations of the
synthetic datasets to the original dataset.

5.3 General Implementation

The CTGAN training process and all evaluation of the synthetic datasets is writ-
ten in Python 3.7. We create CTGAN models using version 0.12 of the Synthetic
Data Vault (SDV) library. The SDV library is an set of open source software sys-
tems concerning synthetic data, this project was launched by the Massachusetts
Institute of Technology in 2018 [21]. The implementation of the SDV CTGAN
is the realization of the original paper [26]. For each combination of the selected
hyperparameters that we optimize in this paper, we create a CTGAN model that
is trained with the appropriate parameters on the “Superstore” dataset. After
training, we save every CTGAN model and create 10,000 rows of synthetic data
with the saved model.

5.4 Gridsearch and Technical Setup

For optimizing CTGAN in respect to e-commerce data we implement a grid
search over the following hyperparameters: epochs {100, 300, 500, 700, 900},
batch size {100, 300, 500, 700, 900, 1000}, log frequency {True, False} (whether
to use the logarithm of the frequency of a value in a column with categorical
data to determine the conditional input), learning rate (LR) for the critic {2e-4,
2e-5} and critic steps {1,5} (number of critic updates to do for each generator
update). The original CTGAN uses 1 critic update and the default from the
WGAN-GP paper is 5 [10]. The grid search results in 240 different CTGAN
models. We compute each model on a Quadro RTX 6000 and parallelize this
process multiple times on a cluster server.

Each of the 240 created synthetic datasets is evaluated with two performance
metrics. The first performance metric is the SDV Single Table Metric, which is
included in the SDV library. The SDV Single Table Metric itself is a collection
of other lower level metrics that can be divided into multiple groups. We use the
following three groups of metrics (based on the SDV framework) to measure the
quality of our synthetic data:

statistical metrics: KSTest, CSTest
likelihood metrics: GMlikelihood
detection metrics: LogisticDetection
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The SDV Metric returns a score between 0 and 1, being 0 the worst and 1 the
best possible score [21].

As a second performance metric, we supplement the SDV metric with an ad-
ditional component for categorical relationships: we use a combined and equally
weighted score from the normalized SDV metric value and the normalized 1 -
CV deviation value. This combined metric, CVSDV, also scores the synthesized
datasets on a scale of 0 to 1, with a score closer to 1 indicating higher similarity
to the original dataset.

6 Results and Discussion

In this chapter, we evaluate two synthetic datasets, the dataset that scores high-
est in the SDV metric and the dataset that has the highest score in our new
CVSDV metric. We start by evaluating the similarity of the synthetic column
distributions to the original distributions. Afterwards, we inspect how closely
the original relationships of the columns with categorical data are transferred
to the synthetic data. The two best combination of hyperparameters in terms of
SDV metric and CVSDV metric are shown in Table 1.

Table 1: Hyperparameters synthetic datasets with highest SDV or CVSDV

Dataset Epochs|Batch Size|Log Freq.|Cr. Steps|Cr. LR|SDV |CVSDV
highest SDV 100 1000 False 5 2e-4  |0.6323|0.6477
highest CVSDV|500 900 False 5 2e-4  ]0.5835|0.7945

6.1 Column Distribution

Both the Kolmogorov—Smirnov test [3] for continuous columns and the Chi-
Squared test [13] for columns with categorical data show high similarity between
synthetic and original dataset (see Table 2).

Table 2: Chi-Squared test and Kolmogorov—Smirnov test results.
Synthetic Dataset Chi-Squared Test|Kolmogorov—Smirnov test
highest SDV score 0.998794 0.880171
highest CVSDV score|0.995688 0.908547

All continuous columns of the two synthetic datasets do not exceed the value
range of the original columns. However, it is noticeable that both synthetic
datasets strongly decimate the upper and lower limit of the value range in some
continuous columns like Sales. The table-evaluator [22] Figure 2 shows the syn-
thetic datasets cumsum of the Sales column, a statistical quality control that
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Fig.2: Cummulative sum Sales column in synthetic datasets.

measures change [1]. We recognize a few purchases of more than 5,000$ in the
Sales distribution of the original dataset, these edge cases are missing in both
synthetic datasets resulting in a about 76% smaller value range. Overall both
synthetic datasets lack about 40% value range in continuous columns compared
to the original dataset.

Some synthetic columns have fewer categories than the columns in the origi-
nal dataset. For example, this is the case for columns like Product ID that have
a large amount of possible categories (1862). Columns with fewer categories like
Region or Sub-Category contain the same categories as the original dataset. Fig-
ures 3, 4a and 4b display the distribution of the column with categorical data
Sub-Category: a strong increase of purchases of “Bookcases” can be seen in both
synthetic datasets. The cause for these unusually high “Bookcases” values could
be mode collapse, a failure typical for GAN architectures [26].

6.2 Categorical Integrity

Figures 5, 6a and 6b illustrate the Wicher Bergsma Cramer’s V (CV) [4] values
of all pairs of columns with categorical and temporal data in the original dataset
and in the two synthetic datasets. In the heatmaps, a high CV score indicating
high statistical association is connected with a lighter color. The original dataset
has high CV values between columns in the lower left quarter of the heatmap, this
pattern is more evident in the heatmap of the dataset whose hyperparameters
were optimized with the CVSDV metric. The best SDV score dataset has overall
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Fig. 3: Distribution Sub-Category column original dataset.

much lower CV values, visualized by the lower maximum value of the scale of the
heatmap at 0.25, compared to the maximum value of the scale of the CVSDV
dataset heatmap, which reaches a value of 0.6. The C'V-deviation value confirms
a closer proximity of the best CVSDV dataset to the original dataset, the C'V-
deviation of the best CVSDV dataset is 0.32 and that of the best SDV dataset
reaches a higher value of 0.37.

The original CV heatmap (Figure 5) visualizes some special categorical rela-
tionships that do not allow new combinations in the synthetic dataset with very
high values, such as City and Postal Code with a CV value of 0.99. In Table 3 we
can see the absolute numbers and percentage by which both synthetic datasets
correctly reflect these type of relationships. The synthetic dataset, whose model

Table 3: Categorial integrity in synthetic datasets.

Column Pair Number Combinations|Correct SDV|Correct CVSDV
(Category/Sub-Category) |17 5,315(53%) |7,865(79%)
(Category/ Product ID) 1,862 4,385(44%) |4,442(44%)
(Product ID/Sub-Category)|1,862 864(9%) 1,007(10%)
(City State) 604 1,268(13%) |3,099(31%)
(City/ Postal Code) 632 489(5%) 1,643(16%)
(City/ Region) 583 4,124(41%) 16,506(65%)
(State/ Postal Code) 631 1,015(10%) [2,546(25%)
(State, Region) 49 3,589(36%) |6,968(70%)
(Region/ Postal Code) 631 2,982(30%) |5,226(52%)

was optimized with the CVSDV metric, achieves a higher number of correct
matches for each individual column pair. The largest absolute difference oc-
curs at (State/Region), here the CVSDV dataset achieves a better result by
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Fig. 4: Distribution Sub-Category column in synthetic datasets.
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3379 correct data rows, which means an increase of 94 % compared to the SDV
dataset. Applying the CVSDV performance metric increases the number of cor-
rectly assigned rows for the column pair ( City/Postal Code) by as much as 235%,
which is the highest percentage improvement. It is noticeable that for categories
with many possible combinations like (Product ID / Sub-Category) both synthetic
datasets achieve very low matches. Overall, the SDV dataset achieves an average
of 27 % correct matches and the CVSDV dataset average is 17 percentage points
(or 63%) higher at 44 % correct categorical assignments.

For completeness, we briefly consider the temporal integrity of the synthetic
datasets. There are also temporal requirements that must be met in the synthetic
data in order to reflect a real purchase process, e.g. the Ship Date must be tem-
porally after the Order Date. The correct chronological order of the date columns
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Fig.6: Cramer’s V of column pairs in synthetic datasets.

is maintained in both datasets to 50 percent, the CVSDV dataset reaches only
minimally better values than the SDV dataset.

7 Conclusion

Overall, the CTGAN architecture seems to be a promising architecture to gener-
ate e-commerce data. Both synthetic datasets have similar column distributions
to the original dataset and the reduction of the definition range in continuous
columns only plays a minor role, since this only affects a small subset of the
data.

For a real world application of synthetic e-commerce data, it is important
that each data row reflects a correct buying processes, and therefore keeping
correct categorical relationships is a key point. For both evaluated synthetic
datasets, this categorical integrity is only maintained at an average percentage
of less than 50 percent: SDV metric dataset (27%) and CVSDV metric dataset
(44%), which is not satisfactory. Especially for column pairs with a large num-
ber of categories, CTGAN has problems to reflect their relationships correctly in
the synthetic data. However, there is a significant overall increase in the dataset
whose CTGAN hyperparameters are optimized with the CVSDV metric. Apply-
ing the CVSDV performance metric more than doubles the number of correct
assignments for some column pairs and improves the average categorical integrity
by 17 percentage points.

In order to use CTGAN for the production of synthetic e-commerce data,
other approaches are still needed that will lead to better categorical integrity.
One approach, could be to integrate statistical evaluation metrics, such as the
presented CV-deviation, into the direct training process of CTGAN and thus
enforce greater adherence to categorical relations at an earlier stage. Another
interesting approach could be increasing the pac size, i.e., the number of data
rows that the critic receives as samples, to more than 10. Viewing multiple rows
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of data simultaneously could make the correlations between columns more visible
to the network and improve the ability of the CTGAN architecture to translate
such relationships into synthetic data. To improve the overall performance of the
CTGAN architecture other loss function could be tested which lead to a good
performance in current GAN models like the adversial loss used in NSGAN with
R1 regularization [16].

Another research direction would be to add the training of a real-life recom-
mender system as a subsequent evaluation step. The recommender performance
achieved with the synthetic dataset could be then compared with the recom-
mender perforamance of the original dataset.
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Abstract. In this paper, we introduce the problem of risky tackle de-
tection from American football practice videos and propose a 3-stage
Convolutional Neural Network (CNN)-based pipeline to improve detec-
tion accuracy. At first, we propose an anomaly detection-based approach
to temporally localize the tackle action. Spatial regions of interest are
then identified using an object recognition model. Finally, 3D convolu-
tion is applied to classify risky and safe tackles based on spatiotemporal
features. Our approach trades off between end-to-end action classifica-
tion from untrimmed videos and precise localization of temporal an-
chors of an action. We conduct our experiment on a newly created data
set that contains 178 annotated videos collected from seven different
practice fields. We empirically demonstrate that our proposed method
outperforms state-of-the-art video classification and anomaly detection
approaches applied directly to untrimmed tackle videos.

Keywords: American Football, Head Injury, Risky Tackle Identifica-
tion, Deep Learning, Sports Video Classification.

1 Introduction

In this work, we address the problem of simultaneous action detection and risk
estimation as a classification task for videos. Such computer vision applications
in sports span a gamut of static scene analysis to high frame rate videos cover-
ing entire practice sessions, and from brief training exercises to plays. The key
rationale for visual analysis of sports videos is monitoring and then providing
early warnings of potentially injurious practices. This would allow coaches to
intervene to prevent injury and mitigate resulting risk and harm, whether phys-
ical, psychological, or financial, from improper tackling. Specifically, the Centers
for Disease Control (CDC) estimates that between 1.6 and 3.8 million sports-
related concussions (SRC) are reported annually with American football showing
the highest proportion of head injuries or concussions among all sports [21] [5].
Research shows that in youth football, on an average, one player out of every 33
players may suffer a concussion during the season. Concussions occur at a rate
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Fig. 1: Representative frames from videos collected at different practice fields.

of 9.9 per 10,000 athlete exposures; where each athlete exposure is considered
one play either in practice or in a game [22]. In addition, head impact may cause
brain injuries such as hemorrhage, hematoma, and edema. Annually, millions
of dollars are spent to treat injured players and maintain reserved players [36].
Furthermore, this adversely affects the teams, both in competitive performance
and reputation.

Two-thirds of all football-related head injuries occur during practice and one-
third during games, 47% of all SRC occur as a result of head-to-head collisions
[4]. Researchers have found that early exposure to American football may have
a long-term neuropsychiatric and cognitive effects such as Chronic Traumatic
Encephalopathy (CTE) due to repeated head impacts [29] [1]. Learning proper
tackle form at an early age is an important developmental milestone for reducing
unnecessary head impacts among youth football players [21] [23].

Identification and correction of improper-tackle techniques is a key step for
establishing a safe playing environment. Coaches wanting to reduce the poten-
tial for player to player head impacts may choose to use blocking dummies when
teaching the skill to young players. Practice tackles are filmed so that athletic
trainers and coaches can identify dangerous postures and provide corrective feed-
back on player performance. However, these video assessments are carried out
manually by human judges [28] [39] [19]. Manual processing of the videos to
classify risky or safe tackle requires a substantial amount of effort and time from
human assessors.

CNN-based architectures have been shown to be successful at extracting
novel visual features directly from RGB images [13] [38]. Use of CNN in tandem
with Long Short-Term Memory (LSTM) network and the introduction of 3D
convolution have made a breakthrough in many video processing tasks such as
activity recognition, event or action localization, anomaly detection [17] [8] [40]
[16] [3] [37]. This influenced researchers to adopt deep learning-based computer
vision approaches in sports analytics [10] [31]. However, the inherent differences
in actions performed in different sports pose a different set of challenges.
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Automatic detection of the risky forms of tackle solely based on videos can
greatly improve a coach’s ability to correct player behavior and reduce the likeli-
hood that the players sustain head impacts. More importantly, this will help the
players to find out the overall safety ratings of their tackles just after performing
them rather than waiting for more than a week while the coaches analyze the
videos. To the best of our knowledge, no prior research has attempted to classify
tackles from videos of American football practice. In our work, we first exploit
an anomaly detection mechanism to temporally segment the informative frames
containing the tackle and then leverage an existing state-of-the-art object de-
tection model to extract regions of interest from those frames. In last stage, a
customized 3D ConvNet is used to classify risky and safe tackles from the spa-
tiotemporally segmented frame sequence.

To summarize, our key contributions are as follows:

— We introduce the task of risky tackle detection directly from videos of Amer-
ican football practice with a tackle dummy.

— We present a set of 178 labeled American football tackle practice videos
collected in the United States.

— We propose a framework for detecting risky tackles from practice videos
using only video-level annotation.

— We conduct a comparative analysis of our proposed pipeline with state-of-
the-art video classification and anomaly detection approaches for untrimmed
video and evaluate the results in terms of precision, recall, and F1-score.

2 Related Work

Video Classification: One of the core tasks of video processing is video clas-
sification, commonly referred as activity recognition. In the last few decades,
it was very common to use hand-crafted features for video representation. Spa-
tiotemporal interest points (STIPs) [27], 3D variants of scale-invariant feature
transform (SIFT-3D) [33], and histogram of oriented gradients (HOG-3D) [24],
improved Dense Trajectories (iDT) [41] demonstrated promising results. Recent
CNN-based approaches have already gained success over those hand-crafted fea-
tures [17] [8] [40]. One common approach is to extract frame-level features using
2D convolution followed by Long Short-Term Memory (LSTM) cells to capture
temporal dynamics from those frame-level features [8]. 3D ConvNet eliminates
the need for LSTM blocks by extending 2D convolution into the temporal di-
mension, making it well-suited for spatiotemporal feature learning directly from
video [40] [16].

Two-stream networks [35] [3] utilize both RGB frames and optical flow frames.
Optical flow can capture apparent motion information invariant to appearance.
The RGB and flow frames are fed into identical ConvNet to extract features
and are fused at some particular stage. C3D [40], I3D [3], R(2+1)D have proved
that a video classification network trained on a sufficiently large data set such as
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Kinetics[18], Sports-1M [17] can be used to extract video features for completely
different tasks from other domains.

A different approach, however, is to consider binary video classification as an
anomaly detection problem. Most anomaly detection approaches use unsuper-
vised or semi-supervised methods such as dictionary learning [45], topic model-
ing [15], histograms [6], or autoencoders [44] to learn the distribution of normal
video, so it can distinguish the anomalies. Some recent approaches attempt to
solve the problem with supervised learning using both normal and anomalous
videos with video-level annotation [37].

Action Localization: Most techniques for action localization assume that
untrimmed input videos are annotated with the temporal anchor of the action.
They then treat the task as an iterated image classification task, where the
system needs to classify each candidate window derived from running a tempo-
ral sliding window over the whole video [30] [10]. More recently, to reduce the
number of candidate windows, temporal action proposals [9] [14] have been intro-
duced. Buch et al. [2] presented a single-stream temporal action proposal (SST)
to mitigate the issue of multiple passes over the same video frames. However,
all of these approaches require manual annotations for atomic actions which is
subjective, laborious, and time-consuming. Shou et al. [34] proposed a multi-
stage CNN to solve the temporal localization problem. Although it relaxes the
requirement of exact temporal annotation, its benefit is overshadowed by the
complexity of multi-scale candidate segment generation and multiple network
training.

Approaches that completely forgo action-level temporal annotation generally
use a learning framework for multiple instance selection [25] [26] [37]. This allows
localization of action or anomalous events by finding key instances in untrimmed
videos. The video segments are considered instances, and the key instances are
learned based on only video-level labels.

Object Detection: Object detection refers to identifying an object and its
localization. Region-Based Convolutional Neural Networks (R-CNN) [11] have
shown impressive results in object detection. The process includes a sequence of
CNN-based feature extraction, object classification, and bounding box regres-
sion. Mask R-CNN generates a mask in pixel level of the object to segment it
from the generated proposals [12]. Faster-RCNN uses a dedicated CNN-based
Region Proposal Network (RPN) that drastically reduces the proposal genera-
tion time [32].

Injury Detection: Injury detection or prediction is a well-studied area in
sports analytics. However, most research, especially for American football, are
based on either physical and psychological statistics of the player [7] [20] or data
collected from micro-sensor [19] [42] and manual investigation of incident videos
[28] [39] [19]. Very recently, [31] successfully applied 3D convolution to early
detection of injury in baseball pitchers using only videos. There is hardly any
video-based work for American football that attempts to identify risky tackles
that may result in serious head injury.
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Table 1: Data distribution in the data set

Class Name|No. of Samples|Avg No. of Frames
Safe 123 216
Risky 55 203
Total 178 212

3 Data Set Preparation

Lack of a data set relevant to our task motivates us to construct a new data
set. We attempt to solve the problem from a supervised learning point of view;
therefore, we need labeled training data. We build our data set in two steps. First,
we collect videos from practice fields, and then we label each video manually.

3.1 Video Collection

Our data set consists of 178 tackle videos. Originally, we collected other videos as
well, but we had to discard some because of poor resolution and older encoding
format. All the videos are collected from seven different practice fields in the
United States. They are recorded in different formats: MOV, MOD, MKV, and
MP4. All files are then converted to MP4. The frame rate for all videos is 30. A
standard guideline was used to set up cameras, however, the guideline was not
strictly maintained. In all videos, the player starts running from the left, and
the dummy is placed on the right. Some unnecessarily long videos are trimmed
to some extent.

3.2 Data Annotation

We consider the task of risky tackle identification as a binary classification prob-
lem. Therefore, we annotate each video as either ‘safe’ or ‘risky’. The annotation
is done by a certified athletic trainer who first rates every tackle on a scale of
3. Tackles scored 0 or 1 are considered risky while tackles scored 2 and 3 are
considered safe. The annotator judged every video based on the head position,
body posture, and contact point around the strike zone: where the player hits
the dummy. Although many factors from consecutive frames are involved, loosely
speaking, if the head or helmet of the player initiates the contact, the tackle is
risky, but if the player uses his chest or shoulder for initial contact keeping his
head away, that is considered a safe tackle. Table 1 shows the data distribution
that we have after the preprocessing and annotation.

4 Approach

The main motivation behind our approach is to first extract the spatiotemporal
regions that are more relevant to the task with minimum effort and then use
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Fig. 2: Overall pipeline. In the first stage of the pipeline, tackle related frames
are extracted. The second stage localizes the tackle spatially using a pre-trained
Mask-RCNN model. In the final stage, spatiotemporally segmented frames pass
through a 3D convolutional network and subsequent fully connected layers.

these informative segments to identify risky tackles. Figure 2 depicts the overall
pipeline of our proposed approach.

4.1 Temporal Tackle Localization

Manual investigation reveals that only a few frames around the strike zone con-
tain key information rather than frames that are more distant from the actual
tackle event. More specifically, it turns out that only 10-20 frames are impor-
tant where the tackle is happening compared to the huge number of frames in
each video. The task of extracting action-related frames, in other words, the
task of removing redundant frames, is similar to action localization. However,
the drawback of considering the problem as action localization is that we need
the temporal anchors or frame-level annotations defining the start and end of
the tackle action in the video. Therefore, general action localization approaches
require much effort for annotation. Moreover, such approaches are often multi-
stage, which in turn will increase the complexity of our task.

We propose to cast the temporal tackle localization task as anomaly local-
ization where we consider the tackle or collision with the dummy (both safe
and risky) as an anomalous event. To avoid the necessity of temporal or frame-
level annotations, we leverage a state-of-the-art approach [37] that uses only
video-level annotation. They consider each video as a bag and video segments
as instances in a deep multiple instance learning framework. To utilize such an
approach, we create an auxiliary data set. From one video of the original data
set, we create two videos, one before the tackle occurs and another after the
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Fig. 3: Visualization of auxiliary data set creation. Our approach does not con-
sider the highly specific start or end point of the tackle event. Any point in the
gradient space avoiding the solid blue zone can be considered as the temporal
anchor for the normal video.

tackle is finished, unless the tackle event is at the very start or end of the video.
However, this has been done without considering the precise temporal location of
the tackle, as shown in Figure 3. It just requires that the normal videos will not
contain the core frames of the tackle event; thus, anyone with no domain knowl-
edge can perform the task of video clipping. We consider these newly created
videos as normal videos because they do not contain any tackle where the player
is hitting the dummy. On the other hand, we use the original untrimmed videos
as anomalous videos because they contain either safe or risky tackle events at
some point in the video. The rationale behind using the untrimmed videos as
anomalous videos instead of video of the clipped tackle event is twofold. First,
the frames that do not contain the tackle event reside in both normal and anoma-
lous videos. As [37] uses a ranking loss function that discriminates the highest
scored instances in the normal and anomalous videos, the presence of non-tackle
segments in both normal and anomalous videos inherently increase the score of
the tackle segment. Second, at the test time, we expect our approach to identify
the tackle related frames from the untrimmed videos. Thus, training the model
using the whole videos resonate better with the end goal.

We train the anomaly detection model with these normal and anomalous
videos, so the model learns to predict anomaly scores for each segment of a video.
We propose an anomaly score-based selection mechanism for frame extraction.
We run a temporal sliding window of 16 frames with 8 frame overlap and predict
the anomaly score for each window. First, we select the window ¢ with the highest
anomaly score. Then the window which scores higher between the two window
1+ 1 and i — 1 is selected. Finally, we take an extra four frames before and after
the two selected consecutive windows. In this way, the 32-frame long window or
segment will contain the anomaly: the tackle event.
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4.2 Spatial Tackle Localization

The tackle event takes place only in a particular spatial region of a frame within
a large background. Figure 1 clearly shows a background containing unneces-
sary information such as other players, coaches, playground infrastructure, and
service cart. Thus, considering only the spatial region of interest can drastically
reduce the spatial dimension without the loss of any key information.

We propose to take the advantage of a pre-trained object recognition model
to spatially localize the tackle event. As the tackle is performed by a person,
we use the Mask R-CNN [12] object detection model to generate the bounding
boxes for all persons present in the frame. The player appears in a wide bounding
box because of the action performed and the camera set up in close proximity.
Thus, we exploit the relative width of the bounding boxes to select the player
performing the tackle when several persons are present within a frame. Finally,
the selected bounding box is extended to the top and right sides to include the
dummy.

4.3 Tackle Classification

We utilize a 3D convolutional network to learn the spatiotemporal features from
the video frames we retain after discarding the redundant frames. Specifically,
our architecture includes four 3D convolution layers each followed by a 3D max-
pooling layer. The number of filters for the four convolution layers are 16, 64,
256, and 1024, respectively. We use 3 x 3 x 3 convolution filters with stride 1 x1x1
for all layers. According to [40], to preserve temporal features in the first stage,
we have a kernel size of 1 x 2 x 2 and stride 1 x 2 x 2 for the first pooling layer. All
other 3D pooling layers are 2 x 2 x 2 with stride 2 x2 x 2. A global average pooling
layer connects the 3-layer fully connected (FC) block to the convolutional block.
The first FC layer has 512 units, the second layer has 32 units, and the final layer
has only 1 unit. ReLLU activation is used for all the layers except the final one,
which has Sigmoid activation. We apply 50% dropout regularization after each
FC layer and use Adam optimizer with a learning rate of 0.0001. We perform
parameter sweep to empirically select the best set of hyperparameters for the
network. The model is trained to minimize the binary cross-entropy loss:

L= Z (yi logpi + (1 — ;) log (1 — pi)), (1)

where y; and p; denotes the label and the prediction, respectively, for sample 1.

5 Experimental Setup
5.1 Train-Test Split

Experiments were repeated three times with random splits of the data. In each
trial, we perform a 80%-20% train-test split over the samples in the data set. In
all splits, we maintain approximately the same distribution of classes as in the
original data set. To ensure a robust generalizable analysis, we hold out the test
set at all stages of the pipeline.
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5.2 Baseline

We compare our method with one state-of-the-art video classification and one
anomaly detection approach to evaluate the effectiveness of our proposed pipeline.

C3D Baseline [40]: We follow the same convention as mentioned in [40] to
extract the C3D descriptor from the whole video. We obtain the fully connected
(FC) layer FC6 activations of the C3D network for each 16 frame clip with an
eight frame overlap. Finally, to get the C3D video descriptor, we average these
clip level activations and then apply lo normalization that results in a 4096-dim
vector. At first, we attempt to learn a Support Vector Machine (SVM) classifier
using the C3D video descriptor as originally used in [40]. However, such shallow
models fail to learn anything meaningful and always tend to predict the majority
class. This may be due to the class imbalance and lack of sufficient representative
samples from the minority class. The use of class weightage does not seem to
help. Thus, we use a Multi Layer Perceptron (MLP) similar to the one described
earlier in Section 4.3 as the classifier.

Anomaly Detection (AD) Baseline [37]: We compare our model with
this state-of-the-art approach because the task of risky tackle detection can
be considered as an anomaly detection task. We train their network assuming
the risky tackles as anomalous events and the safe tackles as normal events.
We use exactly the same settings for the hyperparameters as in the original
implementation.

5.3 Evaluation Metrics

We consider the set of risky tackles as the positive class while safe tackles are
the negative class. In the presence of class imbalance, which can be extreme for
practice tackles that are supervised by coaching staff, accuracy cannot serve as
an adequate figure of merit, because it does not consider the skewness in class
distribution. Therefore, we report balanced accuracy, which is defined as

True Positive Rate + True Negative Rate
5 :
Following earlier works on learning with imbalanced data sets, we also report
precision, recall, and F1l-score to compare the performance of risky tackle iden-
tification at the final stage. Further, we qualitatively evaluate the performance
of the intermediate stages.

6 Results and Discussions

Comparison with the Baseline: Table 2 shows the quantitative experimental
results for both the baselines and our proposed approach. Under the name Tem-
poral Localization (TL) only, we report the classification results using the frames
obtained just after the first stage of the pipeline. This also serve as an ablation
study for the temporal localization stage. When the Spatial Localization (SL) is
added on top of temporal localization, we use TL + SL to refer to it.
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Table 2: Evaluation metrics for different approaches (TL: Temporal Localization,
SP: Spatial Localization)

Methods Bal. Acc.|Precision|Recall|F1-Score

C3D (untrimmed)| 54.81 41.67 22.22 28.05
AD (untrimmed) | 53.53 35.71 41.67 | 38.46
Ours (TL Only) 55.13 47.62 33.33 37.61

Ours (TL + SL) 66.88 54.25 |55.56| 54.29

Confusion Matrix (C3D) Confusion Matrix (AD) Confusion Matrix (Ours TL+5L)

True label
5]

Risky 9 3 7 5 5 7 10

Safe Risky safe Risky safe Risky
Predicted label Predicted label Predicted label €

Fig. 4: Confusion matrices of a particular trial for C3D baseline (left), state-of-
the-art anomaly detection model (middle), and our proposed approach (right).

Table 2 shows that our proposed 3-stage pipeline outperforms the C3D and
Anomaly Detection (AD) based approaches applied to the untrimmed videos in
terms of all metrics. Our approach achieves 12 — 13% higher balanced accuracy
than the other approaches, which means it detects both classes better. In par-
ticular, our 2-stage (TL only) approach achieves 6% higher precision than the
C3D baseline and and 12% higher precision than the AD baseline. It further
improves by 6% when combined with spatial localization. In terms of recall,
our TL only approach does not do better than the AD baseline, however, the
3-stage (TL+SL) approach achieves significantly higher recall than C3D and
outperforms the AD baseline by a considerable margin. Moreover, our (TL+SL)
approach is able to achieve an Fl-score of 54.29, which is 26% and 15% better
than the C3D and AD baselines, respectively. Therefore, our (TL+SL) approach
achieves higher recall and Fl-score compared to the other approaches without
compromising precision. This denotes the effectiveness of our approach in de-
tecting the positive risky tackle class and maintaining a good balance between
positive and negative class detection. Figure 4 presents the confusion matrices
for the test set of a particular trial. Our model shows similar time complexity
compared to the AD baseline, however, slightly higher than the C3D baseline.
The main computational bottleneck stems from the temporal localization stage.
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Table 3: Ablation study for temporal and spatial localization

Methods Precision|Recall|F1-Score
C3D (untrimmed)| 41.67 22.22 | 28.05
C3D (TL Only) 42.86 25.00 30.90
C3D (TL + SL) 52.22 16.67 25.07
Ours (MT Only) | 60.32 | 27.22 | 36.96
Ours (MT + SL) 49.02 30.56 31.49
Ours (TL Only) 47.62 33.33 37.61
Ours (TL + SL) 54.25 55.56 | 54.29

Ablation Study: We perform an ablation study to analyze the necessity
and efficacy of the intermediate stages. We also manually localize the tackle for
robust comparison and report the results using the notation Manually Trimmed
(MT). We answer the following research questions to interpret the experimental
results:

— Is there any improvement in performance due to the temporal localization?

As we can see from Table 3, the TL and MT only approaches always outper-
form the C3D baseline for untrimmed video in all aspects. We have extracted
32 frames while the average number of frames in untrimmed videos is 212.
Thus, removing a significant portion of the frames does not affect the per-
formance negatively rather improves it and saves computation power. Also,
this reduction in the number of frames opens up the possibility of learning
spatiotemporal features directly from all frames instead of averaging the fea-
tures obtained from chunked video clips.

— Does the use of the spatial localization improve the classification perfor-
mance?

Table 3 shows that the addition of the spatial localization stage always in-
creases the recall for our proposed model compared to the TL or MT only
counterparts. That means removing unnecessary spatial information con-
tributes largely to improve the detection of risky tackles. However, the C3D
model performs poorly when combined with spatial localization, possibly
because of the biases of the pre-trained C3D features towards unsegmented
frames.

Accuracy of Temporal Localization: We manually evaluate whether
tackles are present in the 32-frame long clips extracted from all the test videos. It
turns out that the localization model trained in stage one achieves 97% accuracy
in the test set for the temporal localization task. Therefore, we conclude sub-
sequent stages will require more attention to improve the overall classification
performance.
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Fig.5: Example of spatial localization. The top row shows the original frames
and the bottom row presents the corresponding spatially segmented ones.

Accuracy of Spatial Localization: We leveraged the Mask-RCNN model
from the Detectron2 [43] library in such a way that the detection of the player is
guaranteed in most cases. Figure 5 presents some examples of spatial localization.
However, when the player has not entered the camera’s field of view and there
is another person in the frame, our method occasionally selects that person as
a player. Also, just after the tackle when the player trends downward with the
dummy, the player is often occluded by the dummy. This may cause the spatial
localization model to fail. However, such failures may not affect the detection
task significantly, because these scenarios arise either before the tackle event has
started or after hitting the dummy.

7 Conclusions

In this paper, we propose a 3-stage pipeline to detect risky tackles from Amer-
ican football practice videos. The experimental results show that our proposed
method performs significantly better than the existing 3D ConvNet-based meth-
ods for video classification. There are limitations due to the size of our presented
data set, however, the inherent skewness poses a substantial challenge for im-
proving the model performance even beyond the random guess. In the future,
we would like to use multi-modal approaches to take the benefit of optical flow
features and pose estimation. The use of this automatic risky tackle identifi-
cation framework can provide faster feedback to the player, and such feedback
and supervision during the tackle practice can significantly minimize the risks
of head impact and head injuries among young American football players.
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Abstract. In online learning, the detection of concept drift is still a
challenging task. To avoid incorrect or missing model adjustments due
to concept drift and to increase confidence in the model, model changes
must be transparent to the user. This paper presents a novel approach to
detect and visualize model changes of decision trees in supervised online
learning which are caused by concept drift. The approach is tested on
a synthetic data stream containing global abrupt concept drift at two
predefined time points. For supervised online learning, the Fast Incre-
mental Model Tree with Drift Detection (FIMT-DD) is used. It is shown
that the FIMT-DD reacts to concept drift differently, depending on the
deterioration of the prediction error. The first concept drift that causes a
large increase of the prediction error by the factor of ten leads to approx-
imately 80 % of the tree structure being replaced. The second concept
drift with a comparatively smaller degradation of the prediction error
results in the replacement of less than 20 % of the tree structure. Replac-
ing subtrees and thus adapting to changes in the data stream leads to
an improvement of the prediction error in both cases.

Keywords: concept drift - online learning - decision trees - FIMT-DD.

1 Introduction

Machine learning has been used frequently for the improvement of industrial
production processes in recent years. Machine learning can be used, for example,
to predict whether and when machines will need repairs (predictive maintenance)
[3] or whether products will meet quality specifications [15].

The predictions are made based on models learned from data collected in
the past. When functional relationships in data change, e.g. due to variations
in a manufacturing process, the prediction accuracy of a model trained with
historical data often deteriorates. To maintain a certain prediction accuracy,
models have to be retrained manually. So-called online learning algorithms that
counteract this have become popular in recent years [20]. These algorithms are
not trained with a previously collected data set, but with a continuous data
stream. In this way, the model is automatically adjusted to new patterns in the
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data, maintaining prediction accuracy and avoiding manual retraining. In the
literature, there are no consistent definitions of the term online learning. Often
the definitions provided include the properties adaptivity, incremental model
adaptation and constant memory usage [8]. In [29] online learning is defined as
follows: An online learning procedure generates on the basis of a data stream
S(k) ={s(1),s(2),...,s(k)} with the data points s(1), s(2), ..., s(k) a sequence
of models h(1),h(2), ..., h(k). Here, k denotes to the index of the current data
point from the data stream. Each data point s(k) = (xT(k),y(k)) consists of
a feature vector xT (k) = [z1(k) w2(k)...xp(k)], containing the values of the p
features z1 to x, at time point k, and the corresponding target value y(k).

Each feature vector x* (k) and target value y(k) can be described as a re-
alization of a random variable X and Y respectively, with Y depending on X.
Changes over time of a process, which affect the joint probability density func-
tion (pdf) of the data distribution P(X,Y) = P(Y|X) - P(X), are called concept
drift [14]. There are three types of changes: The pdf P(X) of the feature vector
can change, leading to data points in previously excluded regions of the input
space (virtual concept drift), the conditional pdf P(Y|X) can change due to
non-stationary process behavior (real concept drift), both P(X) and P(Y|X)
can change [29]. Real concept drift can occur gradually, abruptly, incrementally,
or recurrently. For example, the wear of a machine is usually gradual, whereas
a repair of a machine causes an abrupt change in data.

A disadvantage of online learning algorithms is that they can adapt to changes
they are not supposed to adapt to, e.g. due to an incorrectly adjusted sensor.
Therefore, it is relevant that the user of the online algorithm understands how
the model changes over time. To make changes of the model understandable, two
requirements must be fulfilled. First, both the behavior and the structure of the
model must be interpretable. Second, online adjustments of the model must be
visualized. Due to their inherent interpretability, decision trees are well suited to
satisfy the first requirement, which has already been proven in numerous offline
applications [25]. However, there are also promising methods for online learn-
ing of decision trees, like the Fast Incremental Model Trees with Drift Detection
(FIMT-DD) [22]. Similar to the first requirement, methods to visualize model
changes are primarily available for offline learning, so the second requirement is
still pointed out as a topic of research in online learning [12,17].

In this paper, a novel approach to visualize model changes of decision trees
during supervised online learning is presented. The approach is investigated using
FIMT-DD and abrupt concept drift as case studies, but is not limited to them.
To perform an extensive study, FIMT-DD is trained with a synthetic data stream
to which concept drift is added at predefined points in time. Before and after the
occurrence of abrupt concept drift, the tree structure and prediction accuracy
of FIMT-DD are examined and visualized in two-dimensional subspaces of the
input space where the model changes occur.

The paper is organized as follows: Section 2 discusses related work in online
learning and Section 3 explains the basics of the FIMT-DD algorithm. Section 4
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deals with the experimental analysis of the FIMT-DD in the context of concept
drift. Finally, Section 5 summarizes the results of this paper.

2 Related Work

Depending on the availability of the target value, online learning can be grouped
into supervised, semi-supervised and unsupervised online learning [20]. In con-
trast to semi-supervised and unsupervised online learning, supervised online
learning requires that a target value is available at each incremental learning
step k that can be assigned to the feature vector such that the data point
s(k) = (xT(k),y(k)) is given.

The application of supervised online learning extends over many disciplines.
In [24], different online regression algorithms are tested on synthetic and real-
world data for exoskeleton control. The application in [26] aims to predict short-
term traffic flow using Online Learning Weighted Support-Vector Regression.
Another real-world application can be found in [16], where Probabilistic Neural
Networks are used for a dynamic security classification of electric power systems.
In [32], Radial Basis Function Networks are used for both classification (detec-
tion of handwritten digits) and regression (time-series prediction). A slightly
different approach is presented in [21], where a combination of different models
are continuously adapted by online batch learning to predict the product quality
in a semiconductor assembly process.

In addition to the already named online learning methods, an online sup-
port vector machine is presented in [36] and an extensive study of supervised
online learning with different neural networks is carried out in [23]. Motivated
by well established tree construction algorithms and ensemble methods for of-
fline learning like CART [2], GUIDE [28] or Random Forest [1], many tree-based
online learning methods have been developed apart from FIMT-DD: The Very
Fast Decision Tree [7] for classification and its extensions [11,30], the Online
Random Forest [35] and Ultra Fast Forest Tree system [10] for classification,
and the Mondrian Forest [27] for regression. In [37], a supervised dimension re-
duction method called Incremental Sliced Inverse Regression is described that
produces a linear regression model. The Passive-Aggressive Algorithm of [6] is
applicable for both classification and regression, using a margin based approach
which only adjusts the model to data points that were predicted insufficiently.
The retraining of the regression model is similar to Recursive Least Squares [34].

An extensive study in [29] has shown that most supervised online learning
algorithms cannot handle concept drift, or can only handle it to a limited extent.
FIMT-DD solves this problem by using a specific approach to detect concept
drift, which is further described in Subsection 3.3. The methods in [4] and [18]
use a semi-supervised and unsupervised approach, respectively, to address this
problem. Another challenge is to make model changes transparent to the user
that are (supposedly) caused by concept drift, which is discussed in detail in [12,
17]. The user must be able to trust the model to respond to concept drift, and
understand how these changes were detected and how the model would adapt.
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Moreover, incorporating expert knowledge could improve the handling of concept
drift, but locating and explaining changes in the model, which is necessary for
this, is described as a major challenge.

3 FIMT-DD-Algorithm

Several online regression methods were proposed that are suited for dealing with
data streams [5]. In this paper, the FIMT-DD algorithm is exemplary regarded,
which is used to train online regression trees [22]. Besides the ability to learn
from stationary data streams, FIMT-DD contains several mechanisms for de-
tecting and adaption to changes (concept drift) occurring in non-stationary data
streams.

A brief overview of the online training process of FIMT-DD is given in Fig. 1.
All presented steps are performed in each iteration of the learning process. Be-
ginning with just one leaf, the tree structure is expanded by further splitting the
leaves. In order to adapt to concept drift, the FIMT-DD can replace outdated
nodes and leaves. In the following the most important elements of FIMT-DD are
described.

3.1 Splitting Criterion

The decision whether and where to split a leaf is essential for incorporating new
information into the model structure without overfitting. In FIMT-DD, this
decision is statistically made, based on the Hoeffding bound [19].

For splitting a leaf, a combination of a feature z; with i € {N|1 < i < p}
and a threshold value a € R must be selected, defining the splitting condition
¢: x; < a. FIMT-DD uses the Standard Deviation Reduction (SDR) method to
asses the quality of different splits. The SDR is an incremental method, enabling
an efficient computation [22]. It is based on the standard deviation of a single
leaf j

)= (X - X)),

J NJ
(T (1) 5(D)ES; T (D)ES;

with I € {N|1 <1 < k}} and §; C S(k) denoting a subset of N; = |S;| data
points that have reached the leaf. The SDR describes the extent to which the
standard deviation of the data set S; is reduced when it is split into the data
sets St, € S; and Sg := §; \ S.. For a possible split in z;, the SDR is given by

N N
SDR(a) = sd(S;) — ~=sd(SL,) — ~—sd(Sk). (2)
N; N;j
The weighted standard deviations of the hypothetical new leaves are subtracted
from the standard deviation of the original leaf, with Ny, and Ny denoting the

number of data points in the left and right leaves, respectively.
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Fig. 1: Flow chart with the most important steps in the learning process of FIMT-
DD. Concept drift detection is performed with every new data point, whereas
updates to the tree structure are only made each N,,;, data points.

As can be seen in Equation (1), the calculation of the standard deviation,
which is a prerequisite for calculating the SDR, is based on the sum of the tar-
get values y, the sum of the squared values of y and the number IV; of training
instances that have reached a leaf. FIMT-DD stores all these statistical informa-
tion needed in form of Extended Binary Tree Structures (E-BTS), with separate
E-BTS for each numerical feature x;. Each node in the E-BTS corresponds to a
possible split point and is updated with each data point reaching it [22].

After every Nyin data points seen, the best possible split for each feature is
selected from its corresponding E-BTS. These p splits are ranked based on the
SDR. The split of feature x; with the highest value is called ¢4, whereas the
second best split of feature x,, with n # i is called conq. Now the ratio

Tj = SDR(CQnd)/SDR(Clst) (3)

between the two SDR values that result of these two splits is regarded. With this
ratio the Hoeffding bound can be calculated, which is used to decide whether to
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perform a split of the leaf or not. The Hoeffding bound [19] is given by

~|R2m(1)9)
g5 = 72]\[]‘ . (4)

It enables to state with a minimum confidence 1 — § that the average of the
samples with values in the range R lies within distance €; of the true mean, i.e.
the mean that one would expect from the actual distribution [22]. If r; > ¢;, a
split of the leaf is performed. The main advantage of using the Hoeffding bound
is that a decision can be made with statistical certainty on whether to split a
leaf or not. In general, the more data points there are in the leaf, the more likely
is the split.

3.2 Leaf Models

In order to make predictions, a data point (xT(k),y(k)) € S; is passed to the
suited leaf j. The local model structure for the prediction of the target value in
leaf j is defined as a perceptron

;(k) = wjo + Z wj,i (k) - zi(k). (5)

Each perceptron consists of a bias weight w; o as well as the weights w; ;, de-
pending on the number of input values p. In the learning process, the weights
wj,; are updated in an incremental fashion by using the delta-rule. When a new
data point is allocated to a leaf, the weights in the perceptron of the leaf

wj (k) = wj sk — 1) + (3 (k) — y(k))F(K), i #0 (©)

are updated. The new weight w; ;(k) depends on the old weight w; ;(k — 1), the
difference between prediction and target value, multiplied by the learning rate
1 and the normalized value of the feature x;. For incremental normalization of
features, the FIMT-DD uses an adapted version of the studentized residual. The
learning rate n can either be kept constant on a small value (e.g. 0.01) or be
adapted to the number of seen samples in a leaf [22].

3.3 Concept Drift Detection

Concept drift can degrade the accuracy of a decision tree either locally or glob-
ally. If local concept drift occurs in a region of the input space, only parts of
the decision tree become worse or unusable. Global concept drift, with changes
in the whole input space, affects the whole decision tree. To handle both types
of concept drift, FIMT-DD monitors all nodes and leaves for concept drift and,
if necessary, replaces affected parts. For this monitoring, a lightweight on-line
change detection is used, which is next described in more detail.
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Change Detection To monitor for concept drift, the prediction error of each
node is assessed. An increase of the prediction error indicates that the tree does
not represent the input data as well as before and there may be concept drift.
Since the FIMT-DD predictions are made only by using the leaves, the error of
the leaves is propagated up to the individual nodes. To decide whether a change
in prediction error is significant and thus likely to be concept drift, the Page-
Hinkley test (PH test) is used [31]. The PH test is applied to each individual node
j, as soon as a new data point is assigned to it. The test utilizes two variables: The
cumulative variable m;(k) and the minimum value M;(k) = min({m;(q),q €
{N|1 < ¢ < k}}) of this variable. The variable m;(k) is calculated by

mik) = 3 (|y(z)—yj,p(z)|—Ni > (W) =gip)) =) (@)

(x(1),y())ES; 7 (x(0),y(0))ES;

as the sum of the differences between the absolute prediction errors and the mean
of the absolute prediction errors with an additional hyperparameter . The hy-
perparameter controls the sensitivity of the change detection, and the prediction
§;,p(1) results from the subtree below node j and is determined by propagating
the predictions of the leaves up to node j. The PH test PH; (k) = m; (k) — M, (k)
examines the difference between the two regarded variables. For PH;(k) > A,
with a threshold A, an alarm is triggered, signaling that concept drift is likely
present. The threshold A has to be chosen by the user as a hyperparameter de-
pending on the allowed rate of (false) alarms. Increasing the threshold decreases
the number of alarms and vice versa.

Adaptation Strategy The FIMT-DD follows an adaptation strategy where,
when the PH test alarms, the affected nodes are first flagged for re-growing.
Once a node is appropriately marked, an alternative subtree is created starting
in the marked node. This alternative subtree is trained in parallel with the
existing FIMT-DD, i.e., the alternative subtree is trained with each data point
that reaches the marked node in the original tree. The trees continue to exist
in parallel until the alternative subtree becomes better than the original tree in
terms of prediction accuracy. If the alternative tree remains worse, a false alarm
might have occurred and the alternative tree is removed.

The relative performance between the original subtree ij and the alternative
subtree h;, is calculated by the so-called Q statistic [13] on the basis of the
data points (x*(k),y(k)) € S; that have reached the marked node. The squared
prediction error is used as a loss function L(-) which is calculated for the original

L(hjo, k) and alternative subtree L(h; ,, k). In addition, accumulated sums of
these loss functions S(hj.o,k — 1) and S(h;..,k — 1) up to data point k — 1 are
evaluated for each of these subtrees. To penalize errors further in the past less
than recent errors, these accumulated errors are multiplied by a forgetting factor

¢ (e.g., ¢ =0.995). The calculation of the Q statistic is given by

Q(hjo, hjar k) = log L(hjo.k) + CS(hy0 k= 1)
L(hj,a> k) + CS(hj,aa k—1)

(8)
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and is done in a time interval specified by the user, e.g. after every 100 data
points. The sign of the value calculated in the Q statistic shows which of the
compared trees is more accurate. If the result of the Q statistic is a value greater
than zero, the alternative tree performs better than the original tree. Then the
alternative tree is inserted into the existing FIMT-DD.

4 Experimental Analysis

The main focus of this paper is to visualize changes in the tree structure of online
decision trees caused by concept drift in order to enhance the interpretability and
in this way the applicability of these models. This section examines this method
at the example of FIMT-DD. In particular, it is shown how FIMT-DD adjusts
its model structure in the presence of concept drift and how the adjustments
affect the prediction error.

4.1 Experimental Setup

The experiment investigates changes in the prediction error and tree structure of
the FIMT-DD when concept drift occurs. The investigation focuses on concept
drift that affects the tree structure globally (global concept drift).

Data stream A data stream of training data is passed to the FIMT-DD, which
consists in total of 30000 data points. The training and test data are generated
using the test function

f(z1,22) = 10sin (e 22) + tanh ((z1 — 0.5)(z2 — 0.5)). (9)

This function is an adaption of a function that is used in [9] to evaluate the
performance of offline decision trees. The function value f(z1,z2) depends on
the two input variables z; and z5. By changing the factor «, different types of
global concept drift can be artificially generated.

Depending on how the parameter « is changed in the data stream, steady
or abrupt concept drift can be generated. Abrupt changes of the factor « are
further investigated because in this case the adjustments of the FIMT-DD can be
traced more easily. However, due to the functional behavior of the test function,
the effect of this global concept drift vary over the input space. The variations
of « are visualized in Fig. 2. At certain points of interest (e.g. the points where
subtrees are replaced by alternative subtrees), the training with the data stream
is interrupted. These points (a)-(f) are referred to as measuring points and are
marked in Fig. 2. For each of these measuring points, the current tree structure
as well as the prediction accuracy are examined, based on a test data set with
Niest = 10000 data points.
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Fig. 2: Variations of parameter « used to create concept drift in the test function.
Six different measuring points (a)-(f) are marked, in which the tree structure and
the prediction accuracy are examined.

Evaluation criterion: Tree structure In order to make the model struc-
ture of decision trees comprehensible for humans (interpretability), the decision
boundaries of a decision tree can be plotted [33]. The decision boundaries show
which areas of the input space are represented by which leaves. Decision bound-
aries of an offline decision tree remain static after training until a new training
is performed. The decision boundaries online decision trees like the FIMT-DD
change depending on the data stream. Thus, leaves can be split further or leaves
can be replaced in case of concept drift. In this experiment, the input space is
spanned by the two variables 1 and x5. Accordingly, it can be visualized in a
2D plot. Each individual leave is represented by a box.

In order to trace the behavior of the FIMT-DD with respect to the adaptation
of the tree structure, the points in time when changes in the tree structure occur
are investigated. More specifically, two points in time are of special interest:
When the FIMT-DD creates new alternative subtrees and when the subtrees are
inserted or activated in the FIMT-DD. The time span between these time points
describes how quickly an alternative subtree gains a better prediction accuracy
than the original subtree. Furthermore, at each measuring point, the number of
leaves is considered as well as the level of the decision tree on which the new
tree was inserted.

Evaluation criterion: Prediction accuracy The adaptation of the tree struc-
ture is intended to ensure that the FIMT-DD represents the current input data
well. A good representation can be found when the input data is well generalized
(appropriate number of leaves) and the predictions are accurate. In this paper,
the accuracy of predictions is measured by the Normalized Root Mean Squared
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Error NRMSE. The NRMSE is based on the RMSE,

Niest W~

which describes the squared mean deviation between the predictions g(n) and
the target values y(n) from the test data set. To calculate the NRMSE, the
RMSE is normalized using the difference between maximum %, and minimum
Ymin target values from the test data set.

NRMSE = — (11)

Ymax — Ymin

4.2 Results

This section describes behavior of the FIMT-DD during training with the previ-
ously described data stream and changing values for a. Fig. 3 shows the changes
of the tree structure and the prediction performance of the FIMT-DD during
the experiment. Each subplot shows the tree structure and the prediction perfor-
mance at one of the measuring points. To ensure good visibility of the tree struc-
ture, the number of leaves is limited to a maximum of 25 leaves. The NRMSE is
examined both for the tree and separately for individual leaves. For the leaves
NRMSEy, is displayed directly in the plot of the tree structure. For this purpose,
each data point from the test data set is plotted in the input space. Depend-
ing on the value of NRMSE,, all data points assigned to the leaf are colored
in either green (NRMSE < 1.2), yellow (1.2 < NRMSE;, < 2.4) or orange
(2.4 < NRMSE},), such that green corresponds to a relatively small local pre-
diction error and orange to a relatively high local prediction error. The NRMSE
of the whole tree and the number of leaves are indicated below each plot.

Measuring point (a) shows the tree structure after initially learning the test
function and before the occurrence of the first concept drift. The NRMSE values
of the leaves are in the green range for 24 out of 25 leaves. The NRMSE of
the FIMT-DD is 0.160. After 10000 data points, the first concept drift occurs
(a = 1.0). At measuring point (b) (after 10112 data points), a decrease of the
prediction accuracy due to the occurrence of the concept drift is visible. The
overall NRMSE increases more than tenfold from 0.16 to 1.64. The errors of the
leaves increase especially in the right part of the tree, which can be seen by the
orange colored data points in these areas at (b).

The deterioration of the prediction error leads to the tree detecting concept
drift. The times at which alternative subtrees are created and the times at which
it is inserted into the FIMT-DD are summarized in Tab. 1. Additionally, the
hierarchy level at which the concept drift is detected respectively at which the
new subtree is supposed to be inserted is given. The first alternative subtree
is created at data point 10055 and inserted into the FIMT-DD at data point
10113. It is inserted at the second tree level, such that huge parts of the input
space are replaced, as shown at measuring point (¢). At this point, a better
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Table 1: Points in the data stream of creation and insertion of FIMT-DD subtrees

Subtree |Created (k)|Inserted in FIMT-DD (k)|Level of tree
Subtree 1 10055 10112 2
Subtree 2| 10082 - 3
Subtree 3| 20159 20421 4
Subtree 4| 20161 - 5
Subtree 5| 20209 - 4

prediction accuracy at the second tree level can be obtained by using a large
submodel rather than by using the 21 outdated (and now removed) subtrees.
The left part (z1 < 0.17) of the tree, where only a small degradation of the
NRMSE occurs, is retained. Therefore, the tree is able to keep the knowledge
which is not slightly affected by the concept drift. Furthermore, after the first
concept drift, another subtree was created (at data point 10082), but discarded.
Subsequently, the right subtree shown in (c) is further subdivided, leading to the
tree shown at & = 19895 in (d). The adaption of the FIMT-DD to the training
data generated with a o = 1 causes a reduction of the NRMSE by about 35 %
(from 1.67 to 1.09).

After 20000 data points, the second concept drift occurs, in which the pa-
rameter a changes from 1 to 0.5. Due to the change, tree deteriorates in the
upper right corner of the input space, as can be seen in (e). The deterioration
is less severe than in the first concept drift, leading to a lower number of leaves
that are affected by an increasing NRMSE. This can be explained by the fact
that the test function is more complex with @ = 1 and therefore harder to learn
than with a = 0.5. Three new subtrees are created after the second concept
drift, as shown in Tab. 1. However, only one subtree (subtree 3) is inserted into
the FIMT-DD. At this point, one subtree is created at the fifth level and two
subtrees at the fourth level instead of one subtree at the second level, as it is the
case with the first concept drift. This shows that the adaption to concept drift
can also happen distributed over several alternative trees. Subtree 3 was created
at data point 20159 and inserted into the FIMT-DD at data point 20421. The
time between creation and insertion of the subtree is thus more than three times
as long as for subtree 1, which was used in the first concept drift. This is due to
the fact that the NRMSE does not deteriorate as much in the second concept
drift as in the first concept drift. Subtree 3 is inserted at the fourth level of the
tree. Therefore, fewer adjustments are required than for the first concept drift,
allowing more of the tree structure to be preserved.

5 Summary

This paper presented a novel approach for supervised online learning to monitor
when and how decision trees adapt to concept drift. To detect an adaptation of
the decision tree, the tree is observed for large structural changes in higher-level
nodes of the tree. The model changes are then visualized in two-dimensional sub-
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spaces of the input space. In this way, users can understand the online learning
behavior, and can detect and avoid an undesirable model adaptation.

The proposed method was tested in an experimental study on a synthetic
data stream with abrupt global concept drift at two predefined time points
using FIMT-DD. It was shown that the prediction accuracy of certain areas
initially deteriorates when concept drift occurs. The number of affected leaves
varies depending on how the data stream changes (i.e. if the complexity increases
or decreases). FIMT-DD is able to respond appropriately to the changes in the
data stream. In the first concept drift, where the NRMSE increases by more
than 10 times, a subtree at the second level of the FIMT-DD, and thus a large
portion of the tree, is discarded to respond to this high increase in NRMSE. In
contrast to the first concept drift, the NRMSE of the tree during the second
concept drift increases only slightly and fewer leaves are affected by the concept
drift. Here, a subtree is used at the fourth level of the tree. Thus, significantly
more information is obtained.

Although the approach has only been tested for regression and an additional
offline data set for the visualization, the approach can also be applied to classifi-
cation and model changes can be visualized online. For the first point, only the
error metric must be replaced. For the second point, floating or recursive error
measures from the last data points in the data stream can be used.

For further work, the approach should be tested with different types of con-
cept drift (e.g., linear, quadratic) and different tree-based online learning al-
gorithms. Also, the effect of local concept drift can be analyzed. In order to
incorporate expert knowledge into the adaptation of the model, the approach
can be extended through active learning.
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Spectrum-Revealing CUR Decomposition for
Sparse Matrices

Onyebuchi Ekenta and Ming Gu

University of California Berkeley , Berkeley CA 94720, USA

Abstract. The CUR decomposition is a popular tool for computing
a low rank factorization of a matrix in terms of a small number of
columns and rows of the matrix. CUR decompositions are favored in
some use-cases because they have a higher degree of interpretability and
are able to preserve the sparsity of the input matrix. Previous random
sampling-based approaches are able to construct CUR decompositions
with relative-error bounds with high probability. However, these methods
are costly to run on practical datasets. We implement a novel algorithm
to compute CUR approximations of sparse matrices. Our method comes
with relative error bounds for matrices with rapidly decaying spectrum
and runs in time that is nearly linear in m and n.

Keywords: CUR Decomposition - Low Rank Approximation - Sparse
Matrix

1 Introduction

Data analysis is essential to making scientific progress in the modern world.
Scientists often rely on data collected through massive experiments involving
hundreds of sensors or produced through large simulations to gain insights the
structure and behavior of the systems they study. These datasets can reach enor-
mous sizes. Experiments from the LHC can produce petabytes worth of data.
The ITER project, the world’s largest nuclear fusion project, is expected to pro-
duce two petabytes of data every day by the year 2035. Analyzing such data sets
often necessitates the use of considerable computing resources. Access to and
useage of such computing platforms is a limiting factor for scientific programs
conducted across a wide range of disciplines. Having access to more scalable and
efficient procedures for data analysis provides researchers with greater flexibil-
ity by allowing them to analyze their experiments faster and with more easily
accessible computational resources.

Low rank approximation is a common technique in data analysis for reducing
the noise and understanding the relationship between data variables. A com-
mon approach to producing low rank approximations is computing a truncated
singular value decomposition. While this method provides the most accurate
approximations, it has certain drawbacks that make it unsuitable for certain ap-
plications. The resulting singular value vectors will typically be dense even for



138 Onyebuchi Ekenta and Ming Gu

sparse input matrices which can result in excessive costs in storage and process-
ing time. Also, it is sometimes desirable to interpret the singular value vectors
as though they were instances of the data set (e.g. eigengenes for gene-based
data). But this interpretation becomes difficult when using the SVD as the sin-
gular value vectors do not conserve important properties of the matrix such as
nonnegativity and sparsity.

The CUR matrix decomposition is an alternative approach that is better
suited for handling these issues. CUR decomposition computes a low rank ap-
proximation of the form A ~ CUR where the matrices C and R consist of
columns and rows A. By approximating the matrix in terms of actual columns
and rows it both preserves the sparsity of the original matrix and allows for
the natural interpretation as instances of the data set. Because of these proper-
ties, CUR decompositions have become popular in the data science community
where they have been applied to problems such as feature selection, clustering
and graph mining. [26, 21, 5]

Some random-sampling based methods come with relative-error guarantees
[10,30,6]. That is to say, with high probability the CUR decomposition will
satisfy

|A - CURJ% < (1+ )| A — Acl

where Ay is the optimal rank k& approximation. However these methods require
computing sampling O(k/¢) columns and rows to achieve their error guarantees
which is often impractical. Some of these methods rely on quantities that are
expensive to compute such as singular value vectors and leverage scores. Com-
puting these quantities for large-scale datasets of interest can require the use of
large parallel or distributed platforms. [13]

In this paper we introduce the Spectrum-Revealing CUR decomposition
method (SR-CUR). This algorithm allows for the computation of relative-error
CUR decompositions of matrices with a rapidly decaying spectrum. Importantly,
for sparse matrices, the algorithm runs in time that is nearly linear in m and
n, making it feasible to compute large factorizations with modest computing
resources. We run experiments verifying the speed and accuracy of our factor-
izations. Our code is available on Github [11].

2 Related Work

2.1 CUR decomposition

A CUR decomposition approximates a matrix A € R™*™ as the product of a

matrix C € R™*¢ consisting of a collection of columns of A, R € R™™™ consisting
of a collection of rows of A and an inner mixing matrix U. The goal is to find a
choice of columns and rows which minimizes the factorization error ||A — CUR||

A variety of different approaches have been taken to selecting the columns
and rows for the factorization. One approach is to employ deterministic pivot-
ing strategies to make the selections [25,7,17,3]. Another useful approach is to
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employ the maximum volume principle, meaning one seeks to select the columns
and rows that maximizes the absolute determinant of the matrix formed at the
intersection of C' and R. This principle was employed to develop a CUR decom-
position method known as pseudoskeleton approximation [16,15,14]. In [27] a
similar principle known as simplex volume maximization is used.

In [9] the authors propose a linear time CUR decomposition algorithm. A
collection of ¢ columns and r rows are randomly sampled to construct the C
and R matrices which are in turn used to compute U. For a given target rank
k, by sampling ¢ = O(log(1/8)e~*) columns and r = O(ké~2¢2) rows the CUR
decomposition will satisfy

|A = CUR|jy < ||A — Agl2 + €[|All2

with probability 1 — 4. Alternatively by sampling ¢ = O(klog(1/6)e~*) columns
and r = O(kd2¢72) rows the above will hold for the Frobenius norm with
probability 1 — 6.

This method was improved in [10] to yield a relative error factorization
method. Here C' and R are randomly sampled and U is set to be the Moore-
Penrose pseudoinverse of their intersection. The sampling probabilities used here
depend on the right-singular vectors of A. In [21] a random-sampling based CUR
decomposition method was presented which employed statistical leverage scores
to construct the sample distribution. In [6] and also in [30] relative-error CUR
decompositions running in linear time and requiring O(k/e¢) row and column
samples are presented.

The RandomizedSVD algorithm introduced in [22,1] can approximate the
singular vectors in O(mnlog k) time. In [28,29] factorization methods were pro-
posed achieving expected relative error and improved performance compared to
existing methods. See [19] for more information.

2.2 Rank Revealing Factorizations

Rank-revealing algorithms [7] are low rank matrix approximation algorithms
that accurately capture the rank of a given matrix. One such example is the
rank revealing QR factorization. Given an m x n matrix A this produces a
factorization of the form

Ri1 R
ir-ana[

where @ € R™*™ is orthonormal, Ry € RF¥** Riy € RF** % and Ry €
RP»~Fxn—k The factorization is called rank-revealing if

O'k(A)

p(k,n)
Ok+1(A) < Omax (R22) < p(k,n)ors1(A)

< Omin(Ri11) < ok (A)
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where p(k,n) is a low-degree polynomial in k and n. A low rank factorization can
be obtained from RRQR by neglecting Rss. The resulting low rank factorization
A satisfies 3

14— Ally < p(k, mogs1(4)

. A table of achievable values for p(k,n) can be found in [4]. Rank-revealing
methods need not capture the full spectrum of the of the matrix. Mirian and Gu
introduced a new low rank approximation scheme that approximated the full
spectrum of the matrix. [23]

2.3 Randomized Sketching

Sketching is a technique where a large problem is replaced by a much smaller
which can inform the solution of the original problem. A good example of how
randomization can help improve algorithms in numerical linear algebra can be
observed in the problem of linear regression. Consider an m X n matrix A with
n < m. Since the system is overdetermined the problem Ax = b cannot be
solved exactly so we seek to solve the minimization problem miny [|[Ax — b].
This problem can be greatly reduced in size by applying a matrix € that is
randomly sampled from some distribution to produce the much smaller problem
problem miny ||[2Ax — 2b||. In some cases, solving this smaller system yields an
approximate solution to the original problem.

The sampling matrix € can be constructed in a variety of different, the
simplest being forming it out of independent Gaussian distributions. One can also
construct sparse linear maps or maps that have specialized internal structure.
2

In addition to least-squares problems, randomized techniques have also gained
popularity for the problem of low-rank approximation, where certain methods
improve upon their deterministic counterparts. [31, 20, 18].

3 Owur Approach

3.1 Overview

Given an m X n matrix A our algorithm begins by computing a truncated LU
factorization of the matrix. More precisely, for a choice of rank ¢, we compute a
factorization of the form

A A L1y Uy Up
PAQ = =
Q (A21 A22> <L21 Ink> < S >

where the submatrix A7 is £ X £. The factorizations are computed using the
LUSOL software package [12]. LUSOL provides implementations of threshold
complete pivoting (TCP) and threshold rook pivoting (TRP) pivot strategies
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which use a Markowitz strategy to maintain sparsity of the matrix. Either can
be used to produce the initial factorization. This LU decomposition provides

. L . A
us with our initial selection of columns and rows, namely C = ( AH) and
21

R = (A11 A12). We also retain the Schur complement S which will be used in
the Spectrum-Revealing Pivoting procedure described later.

After the initial factorization the Lo; and Ujy matrices are discarded and
we are left storing only the factorization Ay; = L1;U;;. Following this, we
run the Spectrum-Revealing Pivoting (SRP) procedure to improve the quality
of the factorization. The final CUR decomposition will be computed with the
StableCUR procedure.

3.2 Estimating Element with the Largest Magnitude

Computing the maximum entry of a matrix can be expensive if we only have
indirect access to the matrix, such as through a factorization A = BC. We
implement a method to estimate the maximum value in such cases at a reduced
cost. We begin by producing a random matrix sketch via R = QA where  is a
pxm random matrix whose entries are sampled independently from the standard
normal distribution. EELM then determines the column of R of maximum norm
and returns the maximum element in the corresponding column of A. When p
is small computing the p matrix vector products to compute 2A can be more
efficient than computing all entries of A.

Using EELM we are able to quickly identify large elements of the Schur
complement which can be used to improve the quality of the factorization. In
addition to this, if the value returned by EELM is small we can bound the error
of the factorization with high probability. The quality of the estimated maximum
is given by the following theorem

Theorem 1. For p = O (log(n/é)/e”) the estimated value x given by Algo-

rithm 1 satisfies the inequality © > |A||F with probability at least

1-4.

l—e
mn(l+4e)

In particular, we only require p = O(logn) to yield good approximations
with high probability. In practice p is set to some reasonable constant (e.g. 20).

3.3 Spectrum Revealing Pivoting

In the SRP procedure we identify rows and columns that can be swapped with
the rows and columns chosen during the truncated LU facotorization procedure
to improve the quality of the factorization. We apply the maximum volume prin-
ciple as a heuristic to judge the quality of a selection of rows and columns. Thus,
we perform a sequence of row and column swaps with the goal of maximizing
| det Aq;|. Each swap will transform Aj; into a new ¢ x £ submatrix A}; whose
volume is at least a factor f > 1 greater than the volume of A;y, where f is a
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Algorithm 1: Estimating Element with Largest Magnitude (EELM)

Input: A matrix A € R™*" and its projection R € RP*"
Output: r,c, m - row index, column index, and value of the largest element
1 ¢ =argmax [R(:j)ll,
1<g<n

2 Compute the c-th column of A

3 r = arg max |A(j, c)|
i<j<m

4 m=A(rc)

tolerance parameter. We repeat this process until no appropriate swap can be
found.

We determine the swap in two phases. First we extend Aj; into a (£ + 1) X
(41) matrix A1; by adding a new row £+ and column £+ j to the matrix A1y,
forming a (£41) x (£+1) matrix A;. Then we choose a row i’ € {1,...,0,(+i}
and column j’ € {1,...,¢,¢ +i} we wish to remove from A;.

Having identified the relevant rows and columns we swap row £ + i with 4’
and column £+ j with column j’, thus transforming A1; into a new £ x £ matrix
A';. Note that if either ¢/ = £+ or j/ = £+ j then the corresponding swap need
not be performed. The following theorem helps guide the selection of the rows
and columns.

Theorem 2. Let o = S(i,7) and B = K;lT(i’,j’). Then we have,

det A,

det A11 - ‘Oéﬁ|

Thus we have that if |a3| > f we know the volume of Aj; will increase by
at least a factor of f. Ideally, to select the appropriate rows of and columns

we’d want to identify the maximum elements of S and A, so as to maximize o
and . However, computing the exact maximum would be too computationally
expensive, so we apply EELM to estimate them. To do this SRP must keep track
of matrix sketches of A" and S.

After identifying the swap to be performed the LU factorization and the
matrix sketches must be updated to reflect the swap. This means we must update

the LU factorization of A;; and the matrix sketches of S and Xl_lT. The row
and column swaps can be implemented with LUSOL’s column replacement and
row replacement routines. Since Kl_lT is small it is cheap to simply recompute
a new random projection each step. For the Schur complement we iteratively
update the projection at each step. Let €2 be the random p x m — £ matrix used
to compute the projection of S. In each iteration we compute the projection of
the new Schur complement S’ as an update to the previous projection €2S.
Details are provided in the next section.

Updating Sketched Schur Complement
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Algorithm 2: Spectrum Revealing Pivoting

Input: f - tolerance parameter
A" - g x (£+1) Sketch of Xl_lT

S - p x n Sketch of Schur Complement

1 while True do
2 | (i,j,a) « EELM(S,S)
3 FormXu:A([l:kz,k—&-i},[l:k,k—&-j])
a | ('.5.B) « EELM (A, Ay")
5 if |af| < f then
6 ‘ break
7 end
8 Swap rows k + 4 and i’ and columns k + j and j’ and update the LU
factorization.
9 Update S
10 Recompute random sketch AIIT

11 end

Rank One Update In the cases where only a single swap is performed the swap
corresponds to a rank one update of the matrix. That is we have that

A=A +vwT

for the appropriate choice of v and w. For example if we are swapping
columns j; and j» then v = A(:,j2) — A(:, /1) and w = e;, — e;j, where e
is the k-th standard basis vector of R™. The following theorem allows us de-
scribe the update to the Schur complement when the matrix goes under a rank
one update.

Theorem 3. Let B = A + vw?. We partition B, v and w according to the
partion for A. Let S' = By — B21B1_11B12. Then we have S’ =S + E where

E= éva
v = (V2 — A21A;11V1)
W = (wi —wlAT'A)

d=(1+ wlTAl_llvl)

With this, the corresponding update to the sketched Schur complement can
be computed via

1
Qs =QS + gmva

It takes O(¢?) steps to compute d. Computing v can be done in O(m/) time
and computing w takes O(nf) time. Computing the quantity éQ\A/'WT and adding
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it to QS requires an additional O(mp + np) steps. So the update to the Schur
complement takes O((¢ + p)(m + n)) time to compute.

Rank Two Update Now we consider the case where rows £+17 and ¢’ and columns
£+ j and j' are swapped. First we must define some vectors. Let a2T1 and ajs be
i-th row of As; and the j-th column of A5 respectively. Let s. and sf be the
the i-th column and the j-th row of the Schur complement. Let e, be the i'-th
standard basis vector in R¢ and €; be the i-th standard basis vector of R™ ¢, Let
e;‘«r, be the j’-th standard basis (row) vector of R* and and é]T be he j-th standard

(row) vector of R"~¢. Finally, let o = S(4,7) and 8 = Xl_lT(i’,j’), where Aj;
is as defined previously. Then we have the following theorem characterizing the
update to S.

Theorem 4. After swapping rows £+1 and i' and columns £+ 7 and j' the new
Schur complement will be given by

1 1
S =8 — —s.;s- 4+ —vevl
o

/8 T

, where v, and v, are given by

T A—1

a A ey

-1 — 214311 ©i
ve=Ag Al ey +€ + ——5,

«
T A -1

e A a2
T _ T A-—1 =T j’ 11 T
Vr = ej,AH A12 + ej —|— s ——

Given this result we can update the sketch of the Schur complement via

1

1
28 = NS — —0s.sF +
a B

T
02vev,

Computing the vectors s. and v, can be done in O(m/) time and computing
s, and v,. can be done in O(nf) time. The corresponding update to the sketched
Schur complement will require an additional O(mp + np) steps to compute. The
total time necessary to update the Schur complement is therefore O((¢+ p)(m+

3.4 Spectrum-Revealing CUR

The end result of SRLU gives a selection of columns and rows to use for the
CUR decomposition. The final CUR decomposition is given by the StableCUR
procedure described in Algorithm 3 with the above choice of C and R as input.
Since this method requires the computation of QR factorizations, it comes with
an increased memory cost.
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Algorithm 3: StableCUR

Input: A matrix A € R™*", R € R>*™ C e R™*¢ ¢
Output: Ay

1 Do QR factorization on R” to obtain a basis of rows of R,R = R, Q,
2 Do QR factorization on C to obtain a basis of columns of C,C = Q.R.
3 B=Q/AQ/

4 Do SV D on B to Compute By

5 Ak = Qch Q'r

4 Theoretical Analysis

4.1 Time Complexity

LU Decomposition For dense matrices the truncated LU decomposition would
take O(¢mn) time. For sparse matrices the time varies depending on the size and
degree of sparsity of the matrix.

The choice of TCP and TRP affects the overall run time of the algorithm.
When threshold complete pivoting is used, typically the follow-up spectrum-
revealing pivoting steps typically performing very few or no swaps at all. As a
result TCP will typically be the faster choice for smaller matrices. However if
the matrix is too large or too dense TCP can become too expensive to compute
and so TRP will be the better choice.

When TRP is used, the spectrum-revealing pivoting tends to perform many
swaps and he initial factorization will typically only represent a small fraction
of the total computation time. Thus the total computation time will typically
be dominated by the SRP and StableCUR procedures.

Spectrum-Revealing Pivoting Running EELM for the Schur complement
requires O(pn) time. Recomputing the sketch Ai; and estimating the maximum
of A" requires O(qf?) time. The LUSOL routines to update the factorization
require O(¢2) steps. The update of the projected Schur complement requires
O((p+ £)(m +n)) steps. Thus the total time for an iteration of one iteration of
SRP takes O(gf? + (p + £)(m + n)) time.

With a probability of .99 SRP will require at most O(¢log(mn)) iterations [8].
Thus the total complexity for spectrum-revealing pivoting is O(¢log(mn)(qf* +
(p+£)(m + n)). EELM procedure yields good approximations for p = O(logn)
and ¢ = O(log¥). Thus the total time complexity of the Spectrum-Revealing
Pivoting method is O (¢log(mn)(¢*log £ + (logn + £)(m + n))).

StableCUR The QR factorization of R? and C requires O(m¢?) time and
O(nf?) time respectively to compute. For dense matrices B = QI AQ? would
require O(mnf) time. But since A is sparse significant savings are made. If A
is sparse, the matrix-vector product Av can be computed in time O(nnz(A)).
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Computing A = AQT can be done in O(nnz(A)¢) time. Then, computing QgA
requires an additional O(m/f?) steps to compute.

4.2 Error Bounds

Spectrum Revealing Pivoting

Theorem 5. For j < k and v = O(fk/mn), SRP produces a rank k SRLU
factorization with

HJLAHQT - ILﬁH2 < yopi1(A)

i o1 (A
|manf - (LU)]-H2 < oj11(A) (1 + 2yw>
J

SR-CUR
Theorem 6. For v = O(fky/mn) the SR-CUR decomposition satisfies

IA —All2 < |A - Allp < Y01 (A),

- 2 2 2 2 A
|a-A < <1+W1”> 1A~ Al

rank(A
Zi:kil ) U?(A)

T2 o7 (A) 2
A-A < <1+2v”“) |A = ALl
H 2 oi1(A) 2

with probability .98

5 Experiments

5.1 SR-CUR

We provide an experiment demonstrating the capacity of SR-CUR to compute
nearly optimal CUR decompositions. Drawing from the SuiteSparse Matrix Col-
lection we collect a dataset consisting of matrices exhibiting rapidly decaying
spectrum.

We compute factorizations for k£ = 100, 200, 300, 400, 500. We use TRP for
the initial factorization and set f = 2. For each k we set { = k + 50 to ap-
ply the Stable-CUR algorithm. The SVD computations were computed with
Matlab’s svds function for £ = 500. We compute the relative Frobenius error
|A — Agllr/||A|lr for each factorization. We compare the results against SVD
and the L2-norm based random sampling method described in [9] with imple-
mentation provided by [24]. The results are shown in Figure 1. The time spent
on the £ = 500 factorization is shown in Figure 2. To simulate a low resource
environment the maximum number of MATLAB threads was set to 4 during
these computations.
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Fig. 1. Comparison of SVD, SR-CUR and L2-norm sampling CUR

6 Conclusion

We provide a high quality implementation of a the SR-CUR decomposition al-
gorithm. We see that for matrices with rapidly decaying spectrum SR-CUR is
capable of achieving releative-error bounds. For sparse matrices, our approach
comes with improved complexity bounds that allow it to scale easily to to large
matrices without the use of parallelization. Our experiments verify that our ap-
proach offers substantial benefits over alternative methods.
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Abstract. Since the seminal paper by Breiman in 2001, who pointed
out a potential harm of prediction multiplicities from the view of explain-
able Al, global analysis of a collection of all good models, also known as
a “Rashomon set,” has been attracted much attention for the last years.
Since finding such a set of good models is a hard computational problem,
there have been only a few algorithms for the problem so far, most of
which are either approximate or incomplete. To overcome this difficulty,
we study efficient enumeration of all good models for a subclass of inter-
pretable models, called rule lists. Based on a state-of-the-art optimal rule
list learner, CORELS, proposed by Angelino et al. in 2017, we present an
efficient enumeration algorithm CorelsEnum for exactly computing a set
of all good models using polynomial space in input size, given a dataset
and a error tolerance from an optimal model. By experiments with the
COMPAS dataset on recidivism prediction, our algorithm CorelsEnum
successfully enumerated all of several tens of thousands of good rule
lists of length at most £ = 3 in around 1,000 seconds, while a state-
of-the-art top-K rule list learner based on Lawler’s method combined
with CORELS, proposed by Hara and Ishihata in 2018, found only 40
models until the timeout of 6,000 seconds. For global analysis, we con-
ducted experiments for characterizing the Rashomon set, and observed
large diversity of models in predictive multiplicity and fairness of models.

1 Introduction

In applications of machine learning models to critical decision-making tasks,
such as judicial decisions and loan approvals, there have been increasing con-
cerns about the interpretability of the models [8,17]. If the decisions based on
their predictions might have a significant impact on individuals, decision-makers
must provide the reason of the decisions to assure users of their correctness [17].
Consequently, learning interpretable models, such as decision trees, rule sets,
and rule lists, has attracted considerable attention in recent years [2,8,11,13].
Because these models are expressed as combinations of simple “if-then” rules
as shown in Table 1, it is easy for humans to understand and validate how the
models make predictions [8].

* Presently working for NT'T Communications Co. (e-mail: k.mata@ntt.com)
** Presently working for Fujitsu Ltd. (e-mail: k.kanamori@fujitsu.com)



152 Kota Mata, Kentaro Kanamori, and Hiroki Arimura

Table 1. An example of a pair of competing rule lists of length £ = 3 with similar accu-
racies, 62.5% and 60.9%, for predicting two-year recidivism on the COMPAS dataset.
Although two rule lists have similar accuracy (Acc), they have quite different values
of discrimination measures, namely, demographic parity (DP) and equal opportunity
(EO), whose definitions can be found in Sec. 4.2. They also have a large discrepancy
value 0.325 (the relative Hamming distance between their prediction vectors).

Acc DP EO Rule list models

if juvenile-felonies>0 &
current-charge-degree=Felony, then Yes
0.625 0.083 0.061 R;: else if juvenile-misdemeanors=0 &
priors>3, then Yes
else predict No

if sex=Male & juvenile-crimes>0, then Yes
0.609 0.052 0.042 Ry: else if age=18-20 & priors=0, then Yes
else predict No

Recently, for interpretable models, there has been another concern about the
situation where there exist multiple models that are approximately equally accu-
rate by relying on different features [10,16,18]. In the seminal paper, Breiman [4]
has named such phenomenon “Rashomon effect”. By showing examples of fea-
ture importance, he explained how different models with similar accuracy can
generate different explanations for prediction tasks. From this view, he argues
that it is unreliable to use explanations derived from a single predictive model
for the class of interpretable models such as decision trees and rule lists. By
introducing the notion of prediction multiplicities, Marx et al. [16] showed how
a prediction problem can show multiplicities, and how we can measure the di-
versity of a set of good models.

For example, we show in Table 1 a part of results of experiments in Sec. 5
on the COMPAS dataset [3] for the task of predicting two-year recidivism. The
table contains a pair of competing rule lists which was found by our algorithm
CorelsEnum, associated with the values of the accuracy (Acc), and two major
discrimination measures, namely, demographic parity (DP) [5] and equal oppor-
tunity (EO) [12] (see Sec. 4.2). Although two rule lists have similar accuracies
of 62.5% and 60.9%, respectively, they have quite different characteristics in DO
and EO. Moreover, we observed that there were some rule list which was only
1% less accurate than an optimal rule list, while it made different predictions
on 11% of training data from the optimal one made. This type of prediction
multiplicity is called discrepancy [16], and will be discussed later in Sec. 5.2.

The central notion in the studies mentioned above is the collection of good
models within a given model class H that have similar accuracy as an optimal
model on a given dataset, which is also called a “Rashomon set”, and has been
discussed by several authors [16,18]. Here, we assume to measure the goodness
of a model h by the empirical risk L(h) on dataset S, which is the proportion
of the data that the model makes incorrect predictions. Then, the notion of
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Rashomon sets is captured by the following definition, due to Fisher, Rudin,
and Dominici [7]: the Rashomon set with error tolerance € > 0 is defined as the
set R of all models h whose empirical risk L(h) is at most larger than that of
optimal model h, within tolerance € > 0, that is, given by:

Re:={h e H|L(h) < L(h*) + <},

Although all models in R, achieve similar accuracy, they often differ markedly
in their predictions for individual inputs and thus may have different proper-
ties [10,16,17]. Consequently, characterizing the set R. plays an important role
in validating the reliability of H on a specific prediction problem [16].

To characterize the Rashomon set R. by existing criteria, one often needs to
compute the set R, for a certain model class H on a given dataset. However,
since R, can contain exponentially many models in the input size, exact compu-
tation of R, still remains challenging [17]. Although there are only a few existing
methods for the task [11,18], they can only provide a subset of R. randomizedly
or approximately. Therefore, no one has exactly computed the Rashomon set R.
for the class of interpretable models on real datasets and measured the existing
criteria to characterize the set R. [17].

In this paper, we focus on the class of rule lists [2,11], and study an exact
computation of all the rule lists in the Rashomon set R.. For that purpose,
we extend CORELS [2], which is a state-of-the-art optimal rule list learner,
and propose an efficient algorithm for exactly computing the set R. on a given
dataset and the best-achievable empirical risk. Based on R, we then measure the
following prediction multiplicity scores [16]: the ambiguity . is the proportion
of data that has at least one model with conflicting prediction from hg, while
the discrepancy d. is the maximum proportion of data that a model can make
different prediction from hg over all good models (see Sec. 4.2).

Our contributions are summarized as follows:

— We propose an exact algorithm CorelsEnum for computing the Rashomon
set for the class of rule lists. Based on CORELS [2], our algorithm can
efficiently enumerate all good rule lists with length at most K and within
error tolerance . Unlike the previous method [11], CorelsEnum uses only
polynomial working space to compute the whole set.

— By experiments on the COMPAS dataset [3],with a large value of £ = 15%,
our CorelsEnum successfully computed the Rashomon set R. of around
23,354 all good rule lists of length at most £ = 3 in 1,000 seconds, while the
previous one for top-K rule lists, CorelsLawler [11], listed only top-40 rule
lists before the timeout of 6,000 seconds.

— Based on the computed Rashomon sets R., we analyzed the diversity of a
set of good models in terms of predictive multiplicity [16] and unfairness
range [1,6]. We found that the Rashomon set R, with small error tolerance
€ = 1% had large prediction multiplicities o, = 29% and 6, = 11%. For
discrimination scores, we observed a trade-off between the score and the
empirical risk, and the existence of a few clusters of good models with similar
scores.
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As consequences, our results revealed that real datasets such as COMPAS
could had the large diversity of models that cannot be ignored in explanability.
Thus, we need further researches for efficient methods to integrate competitive
rules to apply existing model explanation methods.

1.1 Related Work

Rule models, such as decision trees, rule sets, and rule lists, are popular inter-
pretable models [2,8,14,17]. Among them, rule lists and their variants [2,11, 20]
have been widely studied from the view of global optimization. Angelino et al. [2]
proposed an algorithm CORELS that finds a single optimal rule list that exactly
minimizes the size-penalized empirical risk by branch-and-bound search. In this
paper, we extended CORELS for computing the complete set of all almost-
accurate rule lists using enumeration and data mining techniques [9].
Computation of the Rashomon set R. has been attracting increasing atten-
tion in recent years [17] from various perspectives, such as interpretability [7,18],
predictive multiplicity [16], and fairness [1,6]. However, exact computation of R,
with a small memory footprint still remains challenging [17]. Particularly, Se-
menova et al. [18] described a procedure for randomly sampling a subset of R for
decision trees of bounded size. Hara and Ishihata [11] have proposed an efficient
top-K rule list learner, called CorelsLawler here, based on empirical risk using
the well-known Lawler’s method [11]. We remark that neither of the above meth-
ods did not achieve as goals exact computation of the whole R, and polynomial
working space. In contrast, our algorithm achieved both of these requirements.

2 Preliminaries

In this section, we give basic definitions and notation, which will be necessary in
the following sections. We also introduce our problem of computing the collection
of all good models for a class of models. For the notions that are not found here,
please consult appropriate textbooks such as [13].

2.1 Notation

For a predicate v, I[¢] denotes the indicator of v; that is, I[¢p] = 1 if ¢ is
true, and I[¢)] = 0 otherwise. Throughout this paper, we consider the binary
classification problem as our prediction problem, and assume Boolean features
as in most studies on learning rule models [2,14]. Then, the input and output
domains are X = {0,1}’ and ) = {0,1}, respectively, where J € N is the
number of features. An ezample is a tuple (x,y) of an input vector (or an input)
x = (x1,...,2y) € X and a prediction label (or a label) y € Y, and a dataset is
a sequence S = {(x,,yn)}_; of N examples, where S € (X x Y)V. For a given
classifier, or a prediction model, h: X — ) and dataset S, the empirical risk of
h is defined as L(h | S) := %ij:ll(yn? h(x,)) € [0,1], where [: Y x Y — Rxq is
a loss function that measures the difference between the prediction h(x) and the
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true label y. In this paper, we assume the 0-1 loss I(y, §) = I[y # §]. The number
of misclassifications by h on S is defined as #Err(h | S) := SN (yn, h(xn)) €
[0..N]. Note that the empirical risk is given by L(h | S) = %#Err(h | S).

2.2 Rule List

In this study, we focus on the class of classifiers, called rule lists [2,11], defined
as follows. Let X = {0,1}” be an input domain of .J Boolean features. Let T be
a set, called a vocabulary, which consists of terms over a set of J Boolean features
x1,...,25 over {0,1}. Each term ¢ in T is a conjunction ¢ = (z;, A -+ A x;,)
of Boolean features, and represents a Boolean assertion ¢: X — {0, 1} such that
t evaluates true on an input vector x € X if z;; = 1 for all 1 < j < k, and
false otherwise. For example, (‘age = 18 - 20°) A (‘sex = Male’) is a term used
in experiments of Sec. 5. As with previous studies [2,14], we assume that T
includes the constant 1 (true), and that 7 is pre-mined by frequent itemset
mining algorithms (e.g., FP-growth [9] or LCM [19])

Let Y be a set of prediction labels. A rule over T and Y is a pair (¢t — y) of
aterm ¢t € T and a label y € ), which corresponds to the conditional statement
“if ¢, then y.” A rule list of length ¢ > 1 over T and ) is a tuple d = (r1,...,7¢)
of ¢ rules, where (i) r; = (t; — y;) is a rule for every 1 < ¢ < ¢, and (ii) the last
rule rp always has constant test t; = 1, and is called the default rule. In Table 1,
we show an example of a rule list. We denote by o the concatenation operation
for rule sequences. A rule list d = ((t; — v;)){_; naturally defines a prediction
model hg: X — Y such that given an input x in X, the prediction y = hg(x) in
Y is computed by the code below:

if ¢1(x) then predict y;, else if t9(x) then predict ys, ...,
else if ¢;_1(x) then predict ys—1, else predict ys.

In the above code, whenever the label y; is predicted, the condition t;(x) =
OA---At;_1(x) = 0 and ¢;(x) = 1 must hold. Then, we say that x falls into the
i-th rule ;. For a given dataset S € (X x V)V, regularization parameter A > 0,
and a set T of candidate terms, the task of learning a rule list is formulated as:

ha- = argminy, e Bx(ha | S) := L(hq | S) + X-1d|. (1)

Although finding an optimal solution of the problem (1) is a hard combinatorial
optimization, it can be efficiently solved by recent branch-and-bound optimiza-
tion algorithms such as CORELS [2] in many practical instances.

2.3 Computation of Rashomon Sets

To characterize the set of good models, the Rashomon set has been introduced
as a set of models that achieve near-optimal accuracy [17]. For a prediction
problem (X,)), let H be a set of classifiers h: X — Y, which we call a model
class. Following previous studies [16,18], we define the Rashomon set as a subset
of classifiers that achieve accuracy close to a given reference classifier hg € H
with respect to a certain loss function [ and a given error tolerance € > 0.
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Definition 1. Given a model class H, reference classifier hg € H, dataset S,
and error tolerance € > 0, the Rashomon set R.(ho | S) is defined as follows:

Re(ho | S) = {h e H[L(h|S) < L(ho | S) + ¢}

As with existing studies [16,18], we assume the reference classifier hg to be an
optimal rule list hg4« for the learning problem (1), which can be obtained using
CORELS [2]. Note that the choice of hg is independent of our results. Now, we
formally define our problem as follows:

Problem 1. Given a dataset S, a set of terms 7, a reference rule list hg, an error
tolerance € > 0, and ¢ > 0, compute the Rashomon set R.(hg | S) for the class
of rule lists of length at most /.

By solving Problem 1, we can obtain the Rashomon set R.(hg | S) of rule
lists of length < ¢, and can analyze the properties of R.(hg | S) from various
perspectives described in Sec. 4.

2.4 Optimal Rule List Learner CORELS

Our algorithm is designed based on the recent branch-and-bound optimization
algorithm CORELS for learning a single optimal rule list, proposed by Angelino
et al. [2]. Here, we will briefly review CORELS, and discuss how we can extend
CORELS to exact computation of the Rashomon set.

The inputs to the CORELS algorithm are a set 7 of terms, a set ) of labels, a
training dataset S, and numbers £ > 1 and A > 0. Invoked as Corels(7, ), ¢, \, S)
with input parameters, CORELS finds an optimal rule list d, with length < ¢
that minimizes the objective R(d,) in eq. (1) by traversing the hypothesis space
of prefixes of rule lists as follows. For every 1 < k < {, let dy, :=7r10--- 071} i
called a k-prefiz, where r; = (t; — y;) and o is the concatenation. Then, CORELS
starts with the empty prefix () and by recursively expanding the current (k—1)-
prefix ™ to k-prefix 7/ = worg, 0 < k < ¢, by appending a new rule r, €
T x Y. The CORELS algorithm employs sophisticated pruning strategies using
constraints such as maximum rule length L, and the estimate of a lower bound
of the objective.

If Meorels < |V)°|T|°71 is the number of caldidate prefixes for CORELS to
visit, CORELS runs in teorels = O(Meorels|S|) time and scorers = O(L+ S|+ |T1)
space in the worst case using stack of length at most L.

3 Methods for finding good models

In this section, we study efficient methods for finding a set of good models
on a given training dataset. Firstly, in Sec. 3.1, we briefly review an existing
algorithm, referred to as CorelsLawler in this paper, for Top-K enumeration of
good rule lists using CORELS algorithm as a black-box function, proposed by
Hara and Ishihata [11]. Next, in Sec. 3.2, we propose our algorithm CorelsEnum
that efficiently enumerate all the rule lists of length < K in the Rashomon set
on a given dataset.
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Algorithm 1 Lawler’s method with CORELS for finding Top-K rule lists with
respect to prediction error (score).

Input: A set 7 of all terms, a label set 7, £ > 0, A > 0, and a dataset S.

Output: A list Answers of top-K rule lists in prediction error.
Procedure CorelsLawler

1: Answers < ()

2: (score, Rule) + Corels(T,Y,£, )\, S)

3: Queue + {(score, (Rule,T,0))} > A priority queue of (Rule, T, F') with score as

key, where Rule is a rule set, T" and F' are include and exclude sets of features.

4: while Queue # () and |Answers| < K do

5: (score, (Rule, T, F)) < Queue.deletemin() > An entry with minimum score
6: Terms < Rule.Terms()
7.
8

if Terms ¢ F then > Terms is the set of all terms used in Rule
: Answers < Answers U {(score, Rule)}
9: F + FU{Terms}
10: for each f € Terms do
11: (score’, Rule') < Corels((T\{f}),V,4, ), S)
12: Queue « Queue U {(score’, (Rule’, (T\{f}), FU{f}H}

13: return Answers

3.1 Lawler’s method combined with Corels algorithm

Lawler’s method [15] is a well-known framework for top-K enumeration using a
black-box optimization function. In Algorithm 1, we show the pseudo-code for
Hara and Ishihata’s algorithm [11], called CorelsLawler here, for finding top-K
rule lists using Lowler’s method. This algorithm iteratively calls CORELS [2],
to find one of the optimal rule lists within the subspace of hypothesis. During
the search, It removes some terms appearing in a discovered rule list Rule from
T to efficiently search the hypothesis space of good models, where Rule.Terms()
is the set of terms appearing in Rule.

If K is the number of good models to output, we can show that the time
and space complexity of CorelsLawler is at most t1awier = O(tcorers - K£) time
and Sjawler = O(Scorels + K¥) space. A major disadvantage of CorelsLawler is its
exponential space complexity since it must keep the set F of all terms found so
far for the membership test at Line 7. Since |F| < K < Meorels < [TV,
|F| becomes exponential in £ in the worst case.

3.2 The Proposed Algorithm CorelsEnum

By extending CORELS, we devised our algorithm CorelsEnum for computing
the Rashomon set of rule lists in polynomial space in ¢ and other inputs. In
Algorithm 2, we show the pseudo-code of the CorelsEnum algorithm. Given a
vocabulary T, a label set ), the maximum length parameter ¢ > 0, a dataset
S of N example, and the empirical risk L(hg, | S) of a reference rule list do,
CorelsEnum traverses the space of rule lists in depth-first manner from a shorter
prefix to longer one, starting from the empty prefix ().
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Algorithm 2 A basic algorithm CorelsEnum for computing the Rashomon set
Re(ho | S) consisting of all rule lists hg with length < ¢ such that L(hg | S) <
L(hg, | S) + &, with respect to a reference rule list hy, .
Procedure CorelsEnum(dp, k, L., T, Y, £, S):
Input: A candidate prefix dp = (r1,...,7%), its length k > 0, a non-empty set of terms
T, alabel set Y, £>0, A > 0, L. € [0,1], and a dataset S € (X x Y)V.

Output: The subset of R:(ho | S) consisting of all rule lists with prefix dp.

1: for label y € Y do > Step 1: Processing a rule list d with default label y

2: d< (dpo(l—y)); L+ L(halS)

3: if L < L. then

4: Output (d, L) as a solution > A solution is found
5: ifk > £ then return > Pruning by the maximum length
6: for term t € T do > Step 2: Generating children of a parent prefix dp
T for label y € Y do

8: dp' < (dpo (t = y))

9: if LB(dp',S) < L. then > Pruning by a lowerbound of L
10: CorelsEnum(dp’, k + 1, L., T\ {t}, V,£,5) > Recursive call

11: return

At each iteration with a candidate prefix dp = (r1,...,71%), 0 < k < £,
the algorithm either builds a rule list d from the current prefix dp, or makes
branching with children dp’ = dp o (¢ — y) for all possible combinations of a
term ¢ in 7 and a label y in V.

Invoked with as arguments dp = (), k, L. = L(ho | S) +¢&, T, Y, £, and S,
the recursive procedure CorelsEnum computes the Rashomon set of all rule lists
with length < ¢ on a dataset S at each iteration as follows:

e Receive the current candidate prefix dp of length 0 < k < ¢ over T.

e For each label y in Y, test if the rule list d = dp o (1 — y) and its empirical
risk L = L(hq | S) satisfies that L < L,. If the test succeeds, output the
pair (d, L) as a solution.

e Foreacht € T and y € ), do: First, generate the child prefix dp’ = dpo (t —
y) of length k+1 from dp by appending a new rule (¢ — y), make a recursive
call with dp’, and updating 7' by removing ¢ to avoid duplicates.

In our algorithm, we employ some pruning techniques of CORELS in a sim-
ilar way to prune search of unnecessary subspaces as follows, where we attach
comments to the corresponding part of Algorithm 2:

(1) Pruning based on minimum support: it asserts that each rule must capture
enough number of examples for the reliability of prediction.

(2) Pruning based on estimated lower bounds: When invoking recursive call for a
child dp’, if the lower bound function LB does not satisfy LB(dp’, S) < L,
prune all computation for dp’ and all of its descendants. We use the lower
bound function LB(d, S) that is same to the empirical risk L(hq | S) except
that all data that fall in the default rule are ignored [2] as in CORELS.
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(3) Pruning based on symmetry: If a range of consecutive rules r;,riy1,...,7;
in a rule list d, 1 < i < j < k, have the same labels y; = yi41 = -+ = y;,
any permutation of them does not change the prediction by hg. Thus, we
can keep some 1., ¢ < o < j, and discard the rest of them.

In spite of the inherent difference between CORELS with branch-and-bound
search and CorelsEnum with exhaustive search for all good rule lists, the above
strategies (1)—(3) effectively prune the unnecessary subspaces of candidates. Let
Menum < |V/*|T|*~! be the number of caldidate prefixes for CorelsEnum to visit.
We show the following theorem.

Theorem 1. CorelsEnum of Algorithm 2 enumerates all good rules with length
< ¢ on a data set S € (X x V)N in topum = O(Menum!|S|) time and Sepum =
O(|S| + |T| + %) space.

Proof. The time complexity follows that CorelsEnum requires O(|S|) time at
each iteration to compute the objectives. The space complexity follows that the
algorithm only keep at most ¢ rule lists with length < ¢ on any branch of the
search tree. a

A major advantage of CorelsEnum is that CorelsEnum has the polynomial
space complexity in all inputs including ¢ independent of the number of solutions
K < |T|*'|Y|%, while CorelsLawler requires the space proportional to K, which
may be exponential in £ in the worst case. CorelsEnum has amortized polynomial
delay complexity, that is, it lists candidates in O(].S|) time per candidate. We re-
mark that if the pruning strategy for CORELS effectively cuts candidates earlier
on an input, it is possible that CorelsLawler runs much faster than CorelsEnum
since the search space of the former is narrower than the latter.

4 Evaluation Criteria for Characterizing Rashomon Sets

In this section, we introduce model criteria for analyzing the Rashomon set from
the views of prediction multiplicity [16], and fairness of prediction. [12].
Several useful criteria have been proposed for characterizing some properties
of a certain model class, such as interpretability [7], multiplicity [16], and fair-
ness [1,6], through the lens of the Rashomon set. In particular, we focus on the
predictive multiplicity and unfairness range described below. Note that these
criteria can be easily computed once the Rashomon set R.(hg | S) is obtained.

4.1 Predictive Multiplicity

Marx et al. [16] have introduced the predictive multiplicity as the ability of a
prediction problem to admit competing models that assign conflicting predic-
tions. Given a reference classifier hg, the predictive multiplicity is exhibited over
the Rashomon set R.(ho | S) if there exists a classifier h € R.(ho | S) such that
h(x) # ho(x) for some x in the dataset S. To measure the predictive multiplicity,
ambiguity and discrepancy have been proposed [16].
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Ambiguity. Ambiguity represents the number of predictions by the reference
classifier hy that can change over the set of competing classifiers h € R.(ho | S).
Formally, the ambiguity a.(hg | S) is defined by

ac(hg | S) : NZ maxper, (hols)1 [(Xn) # ho(xn)] € 10,1]. (2)

The ambiguity a.(hg | S) reflects the number of individuals x who could contest
their assigned prediction ho(x) by the deployed model hg since their predictions
are determined depending on the model choice by the decision-makers [16].

Discrepancy. Discrepancy represents the maximum number of predictions that
can change if we switch the reference classifier hy with a competing classifier
h € Re(ho | S). Formally, the discrepancy 6.(ho | S) is defined by

5-(ho | S) = maxner, (hojs) Distran (. o | §) € 0,1], (3)

where Distiym (b, ho | S) = %Zgzl]l [h(xn) # ho(xn)] € [0,1] is the normalized
Hamming distance between the vectors of the predictions by A and hy. Compared
to the ambiguity, the discrepancy d.(hg | S) reflects the number of the conflicting
predictions h(x,) # ho(xy) by a single competing model h € R.(ho | S) [16].

4.2 Discrimination Scores and Unfairness Ranges

While Coston et al. [6] have proposed a framework that evaluate the fairness of
the classifiers over the Rashomon set, Aivodji et al. [1] have pointed out that
the Rashomon effect corresponds to the risk of fairwashing, which is a malicious
attack that rationales unfair complex models by interpretable and fair surrogate
models [1]. By motivating these studies, we introduce the unfairness range to
evaluate the fairness over the Rashomon set R.(ho | 5).

Let z, € {0,1} be a sensitive attribute (e.g., gender or race) with respect to
the n-th example (x,,,y,) in a dataset S. To evaluate the fairness of a classifier h
with respect to the sensitive attribute z, we focus on demographic parity (DP) [5)]
and equal opportunity (EO) [12], which are major discrimination criteria based
on statistical parity. The DP and EO scores of h on S are defined as: DP(h |
8)i= P(h(x) = 1| 2 = 1) - P(h(x) = 1| 2 = 0),EO(h | §) i= P(h(x) = 1| y =
1,2=1)— P(h(x) =1 |y =1,z =0), where P is the empirical probability over
the joint distribution on y, z, and h(x) of S.

Let D € {DP,EO} be any discremination score. We introduce the unfairness
range of the Rashomon set R.(ho | S), denoted 7P, as an approximation of
the distribution of D for the models in R.. Formally, the unfairness range is
the interval v2(ho | S) := [min,D(h | S),max,D(h|S)] C [~1,+1], where
h ranges over Re(ho | S). Since we can exactly compute the Rashomon set
R := Re(ho | S) in tepum by using CorelsEnum proposed in Sec. 3.2, now we
can compute the range 72 (hg | S) in linear time in t,u.m + [R| by scanning R.
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Fig. 1. Cumulative histogram of the number of the models in the Rashomon set for
each value of the error tolerance ¢ from 1% to 15%.

Table 2. Results of execution time and the number of models found on COMPAS
dataset by the existing method (CorelsLawler) and our proposed method (CorelsEnum)
within around 6,000 seconds. The existing method was stopped at K = 40 by timeout.

[Existing method Proposed method

Run time (s) 6021 1058
Memory(MB) 209.3 202.4
Number of models 40 23354

5 Experiments

In this section, we analyze the class of rule lists on the COMPAS dataset [3]
through the lens of the Rashomon effect using our proposed algorithm.

5.1 Experimental Setting

Datasets. We used COMPAS dataset [3] for the task of criminal decision, which
comprises 20 categorical attributes of individual people, relating their criminal
history, with a total of 6,489 training examples (90%) S and 721 test exam-
ples (10%) S’. The task is binary classification, where the positive category
y = 1 indicates that the individual recidivates within two years. The sensitive
attributes z represent the race of the individuals. Programs. We implemented
CorelsLawler and CorelsEnum (Sec. 3) in Python 3.7 with numpy package. All
the experiments were conducted on 64-bit macOS Big Sur 11.2.3 with Intel Core
i9 2.4GHz CPU and 32GB Memory. We used the libraries: pandas for prepro-
cessing, and matplotlib, pyplot.violinplot for charts.

Setting. Throughout this paper, we used the following setting for model
parameters. A label set is Y = { Yes, No}, and the maximum length of rule lists
is £ = 3. We used the vocabulary T C Teorels Of 64 terms selected from the
set Teorels Of all 155 terms in the github repository of CORELS [2] so that a
term t is selected if and only if it evaluates true on at least half of the positive
examples! as with previous studies [11]. Consequently, we obtain a candidate

! This was because we were interested in characterizing the positive category as in [11].



162 Kota Mata, Kentaro Kanamori, and Hiroki Arimura

Objective function value(exsiting) Objective function value(proposed)

0 0.40 0 0.7
E E
© ©
> >
So0.39 506 (_/
] 5]
S 5
2038 <
8 804
= 9
©0.37 ©
0 10 20 30 40 0 5000 10000 15000 20000

k-th model k-th model

Fig. 2. The objective value (training error plus A times the rule list length) against
the rank k of a rule list on the COMPAS dataset for existing and proposed methods.
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Fig. 3. Predictive multiplicity of discovered rule lists in the Rashomon set on the
COMPAS dataset. The violin plots (above) show the distribution of discrepancy and
the line plots (below) show the ambiguity of rule lists over the Rashomon set.

space of size M = |T|*71|V|¢ = 64223 = 32,798. We first obtained a reference
classifier hy by CORELS on the training dataset S, and then computed the
Rashomon set R. = R.(ho | S) by CorelsEnum. We computed R. by varying
the error tolerance ¢ from 1% to 15%, and analyzed its properties for each ¢.

5.2 Experimental Results

The Numbers of Good Rule Lists by Varying the Error Tolerance In
Fig. 1, we show the number of the models in the Rashomon set by varying the
error tolerance € from 1% to 15%. In the figure, the reference model hg locates
at e = 1%, which amounts to training error 34.8%, while the baseline model h,,
which is such a constant rule list that always outputs y = 0 for any input x
locates at € = 10%, which amounts to the training error 44.8%, i.e., the ratio
of the examples with y = 0 in the training dataset S. From Fig. 1, we can see
that the total number of models in R.(ho | S) increases rapidly between the
error tolerance € of 9% and 10%, and almost saturates after ¢ exceeds 10%.
For example, the Rashomon set with ¢ = 9% (resp. € = 10%) contained 5679
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Fig. 4. The histograms of the discrepancies d. of discovered rule lists in the Rashomon
set with error tolerance ¢ = 1% on the COMPAS dataset, where the blue and yellow
histograms show the frequencies in the training and test data sets, respectively.
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Fig. 5. Distributions of discrimination scores with respect to demographic parity (DP,
upper) and equal opportunity (EO, lower) on the COMPAS dataset. Here, the violin
plots show the frequencies of models with a certain score, while the error bar shows
the unfairness range with DP and EO. The score for the base model is shown in red
dashed lines).

(resp. 11446) rule lists. This is because the Rashomon sets with ¢ > 10% included
exponentially many rule lists as accurate as the baseline model h, in the number
of candidate terms in 7.

Comparison of the Existing and the Proposed Algorithms Next, we
compared the existing method (CorelsLawler) in Sec. 3.1 and our proposed
method (CorelsEnum) in Sec. 3.2 in terms of running time and memory. We
ran experiments for finding good rule lists in the objective function R) with
parameter A = 0.015 for both algorithms within around 6,000 seconds.

Table 2 shows the comparison of the running time and memory usage of both
algorithms within 6,000 seconds. We see that without limit of the error tolerance
g, the proposed algorithm CorelsEnum enumerated all 23354 models including
all good models for any ¢ > 0, while the existing method was stopped at K = 40
by timeout of 6, 000 seconds after finding top-40 good models. From these results,
we observed that the proposed CorelsEnum was about 5.7 times faster than the
existing CorelsLawler. Fig. 2 shows the objective function value against the
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rank of the models. For the top-40 models, we confirmed that both algorithms
successfully found models with the same value of the objective function.

Predictive Multiplicity Next, we examine the predictive multiplicity of the
Rashomon set on the COMPAS dataset. Fig. 3 shows the results on the dis-
crepancy 0. = d.(ho | S) and ambiguity a. = a.(hg | S) of the Rashomon set
Re = Re(hg | S) on the training dataset S for each e. From Fig. 3, we ob-
served that the values of §. and «. monotonically increased as ¢ increased. For
example, the value of discrepancy (resp. ambiguity) with e = 1% was 6. = 11%
(resp. ae = 29%). These results imply that 11% of predictions can be changed
by switching the reference classifier hg with a classifier h € R, that is only 1%
less accurate, and that 29% of individuals are assigned conflicting predictions by
at least one classifier h € R, with the error tolerance 1% [16]. We also measured
6 for all good rule lists h in R.. Fig. 4 shows the histogram of these values with
e = 1% on the training datasetg S and test dataset S’. From Fig. 4, we can
see that there were rule lists that achieved lower discrepancy than that of the
reference classifier hg. It suggests that we can obtain another reference classifier
with lower discrepancy than hy by exhaustive search of the Rashomon set R..

Unfairness Range Finally, Fig. 5 shows the distribution of discrimination
scores demographic parity (DP) and equal opportunity (EO) on rule lists in
the Rashomon set. In the figure, we can clearly see the trade-off between the
empirical risk L(h | S') and the minimum discrimination scores by the lower
ends of violin plots, which is consistent with existing theoretical results [12].
For example, we have a higher discrimination value of DP = 0.10 in the higher
accuracy case with error tolerance ¢ = 1%, while we can have a lower and better
value of DP = 0.02 in the lower accuracy case with error tolerance ¢ = 7%.
After error tolerance ¢ > 10% of the trivial, constant learner, we see that the
distribution becomes stable, and most rule lists in the population hold the lowest
DP = 0.02. Furthermore, we can see that the rule lists are concentrated to a few
clusters, in the violin plots for & from 1% to 8%, indicating existence of a few
subgroups of good rule lists that behave similarly in their syntax and predictions.

6 Conclusion

In this paper, we studied efficient computation of all good models in the Rashomon
set for the class of rule lists. By extending a state-of-the-art algorithm CORFELS
for a globally optimal rule list, we proposed an exact algorithm CorelsEnum for
enumerating all the rule lists in the Rashomon set. To evaluate the usefulness of
CorelsEnum, we conducted experiments on the COMPAS dataset, and analyzed
the computed Rashomon set of the rule lists from the perspectives of predictive
multiplicity and fairness.

In future work, we plan to conduct experiments on other real datasets and
with larger values of £ > 4. It is also interesting to extend our algorithm to other
rule models, such as decision trees of bounded size.



Computing the Collection of Good Models for Rule Lists 165

Acknowledgement. The authors would like to thank anonymous refer-
ees for their valuable comments that improves the quality of this paper. This
work was partly supported grants from Grant-in-Aid for JSPS Research Fellow
20J20654, and Grant-in-Aid for Scientific Research(A) 20H0059.

References

1. Aivodji, U., Arai, H., Gambs, S., Hara, S.: Characterizing the risk of fairwashing.
In: Proc. NeurIPS 2021, to appear (2021)
2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifi-
ably optimal rule lists. In: Proc. KDD 2017. p. 35-44 (2017)
3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica (2016)
4. Breiman, L.: Statistical Modeling: The Two Cultures (with comments and a re-
joinder by the author). Stat. Sci. 16(3), 199 — 231 (2001)
5. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency
constraints. In: Proc. ICDM Workshops 2009. pp. 13-18 (2009)
6. Coston, A., Rambachan, A., Chouldechova, A.: Characterizing fairness over the set
of good models under selective labels. In: Proc. ICML 2021. pp. 2144-2155 (2021)
7. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models
simultaneously. J. Mach. Learn. Res. 20(177), 1-81 (2019)
8. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. CSUR. 51(5), 1-42 (2018)
9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan
Kaufmann, 3rd edn. (2011)
10. Hancox-Li, L.: Robustness in machine learning explanations: Does it matter? In:
Proc. FAT* 2020. pp. 640-647 (2020)
11. Hara, S., Ishihata, M.: Approximate and exact enumeration of rule models. In:
Proc. AAAT 2018. pp. 3157-3164 (2018)
12. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Proc. NeurIPS 2016. pp. 3323-3331 (2016)
13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics, Springer (2001)
14. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: A joint frame-
work for description and prediction. In: Proc. KDD 2016. pp. 1675-1684 (2016)
15. Lawler, E.L.: A procedure for computing the k£ best solutions to discrete optimiza-
tion problems and its application to the shortest path problem. Manag. Sci. 18(7),
401-405 (1972)
16. Marx, C., Calmon, F., Ustun, B.: Predictive multiplicity in classification. In: Proc.
ICML 2020. pp. 6765-6774 (2020)
17. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206-215 (2019)
18. Semenova, L., Rudin, C., Parr, R.: A study in rashomon curves and volumes: A
new perspective on generalization and model simplicity in machine learning. arXiv
preprint, arXiv:1908.01755 (2019)
19. Uno, T., Kiyomi, M., Arimura, H., et al.: Lem ver. 2: Efficient mining algorithms
for frequent/closed/maximal itemsets. In: Proc. FIMI 2004 (2004)
20. Wang, F., Rudin, C.: Falling Rule Lists. In: Proc. AISTATS 2015. pp. 1013-1022
(2015)



166



Evolutionary Numerical Workflow for Large-Scale
Feature-based Remodeling and Shape Optimization

Damir Vucina, Milan Curkovié¢, Ivo Marini¢-Kragié¢

L University of Split, FESB
R. Boskovica 32, 21000 Split, Croatia
vucina@fesb.hr

Abstract. Evolutionary parametric shape optimization relies on generic shape
models which provide sufficient 3D geometric modeling freedom while being
modest in terms of the number of shape variables and hence dimensionality of
search space. The number of shape parameters needs to be reduced towards com-
putational efficiency in shape optimization. However, this may imply loss of gen-
erality or local modeling capacity, potentially also bias towards unintentionally
predefined 3D shape templates, all of which may result in sub-optimal shapes.
This paper develops a novel approach in the form of a conceptual intelligent sys-
tem based on integral parametric surfaces representing objects. The computa-
tional efficiency of the models is established by engaging a sparing multitude of
shape parameters in evolutionary optimization. Sufficiently generic and unbiased
modeling capacity is obtained by the adaptability of the approach, as it can adapt
to the features of the current state in optimization iterations. Decomposition of
the integral surfaces into shape partitions is implemented based on 3D pattern
recognition (edges, peaks, etc).

Keywords: Evolutionary Shape Optimization; Efficient 3D Parameterization;
Intelligent Numerical Workflow; Adaptive Geometric Modeling, 3D feature
recognition, Partitions

1 Introduction

The scope of this paper is related to 3D shape acquisition [1], geometric parameteriza-
tion and evolutionary numerical optimization [2][3]. They are combined to jointly pro-
vide an intelligent system for shape-related decision-making and evolutionary optimi-
zation. The initial solution is in the form of a 3D point cloud and resulting surface mesh
obtained by optical 3D scanning of an existing object, the shape of which is to be re-
modeled for optimized performance. Equivalently, the procedure may also start from
an integral surface fitted on the outer shape envelope of the CAD model. Starting from
an existing ‘good’ design, evolutionary shape optimization will efficiently generate bet-
ter shapes under the ‘guidance’ of appropriate objective functions and constraints.
These define the desired performance measures and given requirements for the object
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in terms of autonomous intelligent shape remodeling. The resulting numerical work-
flow needs to provide for potentially large-scale change of shape whereby some 3D
shape features such as edges may dissolve and new ones arise (genesis of new features)
during the optimization quasi-time, thereby changing the geometric composition of the
overall shape. Accordingly, adaptive generic shape models and intelligent optimizers
are necessary.

In their capacity as databases defining geometric primitives with corresponding pa-
rameters and respective relationships and constraints, CAD (computer-aided design)
models are not suited to represent heavily changing shapes. While feasible within the
context of shape optimization, CAD models are frequently too complex for the purpose.
Sets of geometric primitives represented by parameter sets and relationships may be an
excessively ‘rigid” form to represent dynamic shapes subject to dramatic shape remod-
eling during optimization.

The approach of this paper is based on evolutionary parametric shape optimization
combined with generic shape models, potentially providing an autonomous intelligent
system. The latter must provide rich 3D geometric modeling freedom and be sparing in
the number of shape variables since this multitude directly maps to dimensionality of
optimization space. Unfortunately, these aspirations are in mutual conflict. A smaller
number of shape parameters increases the computational efficiency in optimization, but
may also lead to loss of generality or reduced local modeling capacity, perhaps even
bias during evolutionary shape remodeling. Ultimately, this leads to sub-optimal shapes
and consequently poor decision-making. An intelligent system requires a shape model
of high flexibility in terms of potentially large changes of geometry during shape opti-
mization.

The approach employs integral parametric surfaces in modeling the shape of objects
subject to optimum design. It derives its efficiency from the respective adaptability. The
aspiration is to adapt to the geometric features of the current shape of the object, which
dynamically changes during the course of optimization iterations. Different degrees of
such adaptability are explored.

Initial shape N Eararpetric model of the object ,| Optimized shape
(intelligent shape

(e.g.from3D representation system)

scanner, point

T
cloud)

Shape parameters

SIS | .| Optimizer (decision making) Performance simulator

Fig. 1. Intelligent system for shape-related decision-making and evolutionary optimization

Fig.1 positions the optimizer acting on the compact set of shape parameters effi-
ciently derived from the overall parametric model of the object in the workflow which
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involves a simulator towards evaluating excellence and constraints. Integral shape pa-
rameterization, [4]-[7], may be preferable for early-stage shape representations as no
numerical effort is needed related to maintaining the set of partitions and their continu-
ity in the framework of changing shapes. Multi-partition models tend to be very de-
manding since the composition and topology of the partitions will generally change
during remodeling imposed by the optimizer. Different mathematical models can be
considered accordingly. Early-design stages imply situations where initial shapes are
not just fine-tuned by the optimizer, but also major change in shape and surface con-
figuration may take place. The effectiveness of the approach may be measured by eval-
uating the respective convergence rates (optimization numerical efficiency) and quality
of optima (excellence values achieved) for such problems delivered by the approach
presented here versus classical integral-surface geometric models.

A d"" degree B-spline curve with a given set of (n+1) control points Qi is defined as

PO=YN,(®-Q . te[01] o)
i=0
1, t<t<t,
N- t) = L i+l ,OSS d
o) {0,0therwise} 1= @)
t-t ti+'+1_t - . .
N, (0= =N+ Nyt ,1<j<d,0<i<n+d -]

is) N i+ j+l _ti+1

with t as the position parameter. The basis functions N apply a sequence of scalars-
knots tisuch that 0 <i<n+d+1 where N can be evaluated recursively. A 3D B-spline
surface is defined for a 2D array (ng+1)x(n1+1) of control points Q by

n0 nl
P(u,v) = OZ:,JZ; Niogo(U) - Niyg; (V) Qi , UVE [0'1] 3)
i0=0i1=
where u and v are the position parameters, and do and d; the individual degrees of the
surface with N being the basis functions for the two directions respectively.

In remodeling the initial shape, it is assumed that an existing shape will be digitized
into a point cloud by means of optical 3D scanning. The corresponding parametric en-
tity representing the acquired 3D point cloud will here be obtained by least-squares
based fitting of a parametric surface to the given point data-set.

Fitting a B-spline surface to a given points data-set P, [5]-[7], assumes that the given
points are ordered with increasing associated parameter values. For surfaces with
Tl _Su=% the fitting error evaluates to
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Best-fitting procedures minimize (4) with respect to Q. As an example, a part of a boat
hull was scanned into a point cloud, to which a B-spline surface was fitted (Fig.2a).
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Best-fitting and parameterization may also be applied to ‘repairing’ voids in the point
clouds obtained by 3D scanning as illustrated in Fig.2b. and Fig.2c.

Fig. 2. Fitting to a 3D point cloud of a boat hull with a void in the point cloud acquired by opti-
cal 3D scanning and repairing the void by fitting a surface to the adjacent mesh

2 Shape-Remodeling Based on Evolutionary Optimization

In early design stages, selecting a base geometric shape for an engineering object might
introduce bias and lead to sub-optimal shapes for the given objective function. Ideally,
the shape of the object should be completely generic and subject to any kind of change.
An initial geometry should be able not just to change its dimensions as steered by the
decision-maker for the given excellence criteria and constraints. It should also be able to
undergo major change in shape, potentially developing even drastic modifications both
locally and globally.

Provision for such major change of shape imposes substantial difficulties on the cor-
responding parameterization scheme. If genetic algorithms (GA) are employed as the
intelligent system to generate model improvement, the potentially different shape 'tem-
plates' or geometric primitives contained in the population all come along with different
parametric sets defining them. These different parametric sets defining different individ-
ual phenotypes are coded in corresponding genotypes which consequently possess dif-
ferent internal structures. This paper conceptually explores options for GAs to operate
on populations of potentially heterogeneous chromosomes which code different pheno-
types. This should provide an augmented degree of intelligence to the shape synthesis
decision-making system based on optimization.

The key issues arising with such a setting are challenging:

- What should be the coding for chromosomes for generic shapes which may consist
of sets of different geometric primitives or complex parametric entities (e.g. NURBS)?

- Is it feasible and what are the options for GA operators such as crossover or muta-
tion when operating on such heterogeneous chromosomes given their different internal
compositions of genotypes?

- Isit possible for GAs to operate and generate new phenotypes by manipulating the
chromosomes of different genotype compositions?

Shape models as compositions might typically involve a multitude of individual
primitives (e.g. cuboids, cylinders, NURBS, etc, Fig.3) along with their respective posi-
tions, orientations and respective shape parameters as well as their mutual relationships
and constraints. All this information should be coded in chromosomes, if GAs are to be
employed directly with such models. It might prove virtually impossible to have the GAs
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manipulate all these pieces of geometric information and generate new, yet feasible, ge-
ometric models. The respective children in a heterogeneous GA population can be ex-
pected to differ not only in values of individual parameters but also in the very compo-
sition of the overall shape model, many of them being physically inadmissible or mean-
ingless. The approach of this conceptual paper is to proceed along a somewhat simplified
path while still providing a large scope of generality in generating topologically different
shapes using GAs. Such a numerical workflow as an intelligent system might potentially
be capable for autonomous genesis of new conceptual solutions in terms of shape com-
positions.

All the different shape compositions present in some current GA population are
coded by corresponding genotypes of different internal structures (e.g. different numbers
of genes, coding of different properties) and hence can not be acted upon by the GA
operators. Crossover or mutation operating on incompatible genotypes are infeasible.
The simplified approach to bypassing the above problem is based on converting any
shape composition into an integral B-spline surface which models the ‘outer skin' of the
shape composition. Having converted all fundamentally different shapes into the same
equivalent integral B-spline surface phenotype, the common genotype may code the con-
trol points and potentially nodes in (1) and (2) and provide the basis for evolutionary
operators.

<

A Compositions and
modifications
*

\ Overall object
represented by integral

GA operators . | B-spline surface
(common genotype)

Fig. 3. Generic 3D model for shape-optimization, a symbolic population of heterogeneous phe-
notypes with different parameter sets to be coded by genotypes with different compositions

Accordingly, the idea is to decode the distinct genotypes into the individual pheno-
types and resulting shapes, and subsequently re-coding them into chromosomes derived
from the same common genotype. The latter is to be based on applying integral B-spline
surfaces. Having now the entire topologically heterogeneous population coded in the
same ‘common denominator' form represented by B-splines, GA operators can subse-
quently act consistently on the now 'standardized' internal structure of chromosomes.

After the evolutionary optimization procedure has converged, or perhaps periodi-
cally during optimization iterations, it might ideally be possible to decompose the result-
ing shape into basic geometric primitives, if any, and remaining general NURBS sur-
faces. The basic primitives might include planes, cylindrical surfaces and alike. This
would require feature detection functionality and subsequent partitioning. Ideally, a
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CAD maodel consisting of a set of geometric primitives and their relationships and con-
straints might be derived from the optimized overall B-spline shape, as illustrated in
Fig.4 which conceptually demonstrates the potential decomposition of the optimized
shape. The overall surface of the object is represented as an integral B-spline surface
during optimization, and the optimizer itself operates on its respective set of parameters.
The genotypes and chromosomes in optimization relate to the overall ‘equivalent’ B-
spline parametric representation of the objects regardless of the internal composition of
the object (Fig.3). This enables the formulation of the common genotype for diverse
compositions of geometric primitives in the overall shape of objects.

Based on feature detection, the decomposition may proceed as symbolically shown
in Fig.4, where P denotes plane partitions, C denotes an elliptic cylinder or cone parti-
tion and B stands for B-spline partitions. The optimization procedure may be steered to
favor compositions of basic primitive shapes for technological reasons, e.g. by intro-
ducing rewards or penalties. The resulting topology and connectivity may initially be
represented by a mathematical graph or connectivity matrix (Fig.4), Co denoting conti-
nuity of surface and C; extending to continuity of respective slope. Other representa-
tions can be used, and the final model must include constraint definitions as well.

Figs. 3-4 show that the common genotype may result in different phenotypes after
feature-based decomposition. This conceptual procedure enables evolutionary algo-
rithms to operate on topologically dissimilar shape individuals in the same population.

i i o
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Detection of geometric G [ G ¢ @
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Fig. 4. Conceptual procedure, (a) partitioning of generic 3D model following the completed
evolutionary shape optimization, (b) feature-based decomposition of optimized shape into parti-
tions, (c) representation of connectivity between partitions

3 Conceptual Examples

In order to conceptually illustrate the above procedure, an elementary numerical test
was developed, Fig.5. For simplicity, the shape does not consist of a composition of
geometric primitives, but rather of a single one. The transition of the shape is to be
conducted by GA-based shape optimization.
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Numerical test 1: starting from a sphere as the initial shape, optimization should lead
the shape towards becoming a cube. The fitness function expected to accomplish this
shape transition is maximization of volume of the object subject to dimensional con-
straints in all three spatial dimensions.

Numerical test 2: starting from a cuboid as the initial shape, shape optimization
should lead the shape towards becoming a sphere. The fitness function expected to drive
this transition is minimization of surface area of the object subject to enclosing a given

volume of the object.
Fig. 5. Simple test of substantial shape transition, sphere, cuboid and some intermediate shapes

The first test case is implemented by modeling a general shape, a single B-spline
surface. The initial shape is a sphere approximated by a B-spline surface. The B-spline
surface model is controlled by an evolutionary optimizer acting as a shape-related de-
cision maker which manipulates the respective control points (CPs). The CPs are design
variables such that they can move freely in all three directions, with the exception of
those located at z=0 which can only move in the x and y directions. The volume is
calculated by triangulation of the B-spline surface and application of the Gauss theo-
rem. Additionally, a gradient-based optimizer was applied with numerical gradients
with first-order schemes. The objective function employed for the shape transition

f=-v +K-Zmax(gi,0)2 Q)

where the penalty term K imposes the dimensional requirements given in the form of
general inequality constraints gi<0, and where V denotes the enclosed volume. The in-
itial and final solutions are presented in Fig.5.

The overall procedure is rather sensitive with respect to the penalty and optimization
method. Once the shape optimization procedure has converged, feature-based shape
decomposition or re-composition might be applied to detect partitions. This would lead
to a changed, customized, shape parameterization scheme specific for the sphere or
cube respectively. Generally, this might lead to further improvement of fitness values.
While geometric fitness functions were here selected for direct visualization, any other
involving stresses or similar may generally also lead to dramatic shape transitions,
where re-parameterization on a different basis and hence a different internal chromo-
some structure may become appropriate.
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The example in Fig.6 presents shape optimization of a vertical-axis wind turbine,
VAWT, where a drastic geometric change was induced by changing the simulation
conditions in the optimization workflow. It shows that, given a Darrieus-type rotor ge-
ometry as the initial solution, an optimizer can autonomously accomplish a dramatic
transformation of the respective shape into becoming a Savonius-type rotor and vice-
versa. This major change of geometry (Fig.6b) is accomplished autonomously by the
numerical workflow in Fig.6a. provided that the wind conditions are changed accord-

ingly.
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Fig. 6. (a) Numerical optimization workflow for VAWT with geometric modeling functional-
ity, (b) Large-scale shape transformation of Darrieus-type geometry into Savonius-type rotor
accomplished by the optimizer for changed operating conditions (WindSpeed, RPM)

In the numerical workflow in Fig.6a, the parameters set *CP_* denotes airfoil shape
parameters- control points of the parametric surface, the geometric operators set T_*,
Rz_*, S_* denote transformation matrix operators for translation, rotation, and scaling
respectively applied to the control points. The symbol DOE generates the initial popu-
lation submitted to the MOGA-I1 optimizer aimed at maximizing the power coefficient
Cyp, [8], whereby ANSYSWB symbol denotes the fluid flow simulator with residuals
relating to the numerical solution of flow equations. The precondition for this large-
scale shape transition in Fig.6b is sufficient generality of the geometric model acted
upon by the optimizer, which is here assured by the parameters set and operators set in
Fig.6a.

This example is somewhat simpler than the general approach in Fig. 3 as here the
entire GA population is modeled by the same genotypes coding B-spline surfaces. In
the particular layout in Fig.6a, the GA optimizer varies the shape via manipulating the
control points set and operators set in maximizing the power coefficient, Generally, in
Fig.6a and other shape optimization workflows applied here, different GA settings re-
lated to populations, selection, crossover, mutations, were successful.
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4 Numerical Examples

As an example, Fig.7 shows an integral B-spline surface with some local zones which
could potentially be recognized as edges, eventually subdividing the integral surface
into partitions. These potential edges are ‘dilluted” and not strongly expressed such that
this example may serve in testing the performance of the proposed approach to feature
detection in surface meshes. Examples with more and less strongly expressed features
will be used. The surface is based on a given set of 7x6 control points with 2" degree
B-splines in both directions.

)
Fig. 7. Integral B-spline surface example, varying radii of curvature

The next step is to detect localities on the mesh which potentially belong to edges,
corner peaks, or other specific surface shapes. There are a number of methods that can
be deployed towards such feature detection, commonly based on gradients and curva-
tures of the mesh and their respective change and distribution. Fig. 8 is derived from
applying principal component analysis to the local point set. In fact, a local point is
declared to belong to an edge depending on the ratios of the eigenvalues of the covari-
ance matrix of the local point set of the respective neighborhood.

Fig. 8. Distribution of ratio (minimum eigenvalue)/(average eigenvalue) for local point
neighborhoods in the parametric domain for the surface in Fig.7
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At this point, partitioning the overall surface from Fig.7 based on edge identification
following from Fig.8 requires a procedure to detect the individual closed regions in
terms of associated points (sub-sets of the original data-set). Again, several algorithms
may be used.

The procedure resulting in Fig.9 is based on the watershed algorithm once the points
set has been transformed using the distance transform with inversion. The distance
transform associates to each zero-level point its distance to the closest non-zero point
(edge) thereby providing local minima in each region as seed points for the watershed
procedure, according to:

- convert Fig.8 to binary grid data by applying threshold, obtain basins

- apply distance transform and seed local minima in regions

- apply watershed algorithm to basins

Fig. 9. Watershed transform applied to Figs.7-8, identification of individual regions

Two further procedures are needed: identification of topology of the set of regions
(adjacency, connectivity type) substituting the integral surface, and type of geometric
primitives modeling individual regions. In terms of the configuration of the set of par-
titions, the approach here is to generate a mathematical graph where the vertices denote
partitions and the edges define respective connectivity. Fig. 10 shows the pseudo-code
of the approach developed here, and Fig.11 shows the resulting graph.

for each region
for each of seed points in the region
for each search direction across grid
walk along direction until maximum search distance or end of grid is reached
for each new point during walk determine whether it belongs to
another region

if yes, chech whether regions graph already contains edge
between region of seed point and encountered new
region during walk

if not, add edge in regions graph between region of seed
point and encountered new region during walk

Fig. 10. Pseudo-code towards generating the adjacency matrix of regions
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Fig. 11. Configuration graph obtained by the procedure for the given set of regions

Now, with the individual zones detected in the parametric domain, the corresponding
sub-sets of the original 3Dpoints dataset can be extracted accordingly. The individual
geometric primitives as partitions to replace the corresponding portions of the original
points data-set (surface) can now be determined by fitting such primitives to the 3D
point subsets. This fitting can be implemented in a sequence of steps, for example start-
ing with planes, and following by cylindrical surfaces, spherical surfaces, etc.

Fig. 12. Resulting partitioned ‘substitute surface’ with planar faces representing integral
surface in Fig.7

Obviously, identifying a potential partitioning of the mesh in Fig.7 into a composition
of primitives according to Fig.12 leads to a complete reparameterization of the geomet-
ric model accordingly, as the new parameters define the primitives and their mutual
relationships, which in turn may have a major impact on shape optimization.
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5 Conclusion and Future Work

A numerical workflow consisting of an evolutionary optimizer and a parametric 3D
shape modeler jointly represent an autonomous intelligent system for large-scale 3D
geometric remodeling based on a given set of objectives and constraints. Ongoing and
future work include other elements indicated in Figs. 3-4 such as multi-partition models
and the reverse procedure involving shape feature detection and resulting geometric
decomposition. The proposed model enables higher generality of shape optimization
than with parametric CAD-based optimization approaches as no ‘close’ initial shape is
needed and far more remodeling freedom is provided for, hence making it suitable for
early design stages.
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Abstract. This paper presents a method for the detection of animated
scenes in movie trailers. Regardless of the studio, artists, and the unique
features of diverse animation creation techniques, machine learning tools
can provide concise detection methods of animated scenes in movie com-
ponents. A dataset is prepared by selecting scenes from trailers using shot
boundary analysis and removal of scenes containing non-movie contents;
e.g. credentials. The dataset is composed of over 1400 movie scenes from
230 trailers of various genres. A Convolutional Neural Network (CNN)
architecture followed by Gated Recurrent Unit (GRU) is built by using
transfer learning of EfficientNet.

Keywords: Movie Trailer Labeling - Scene Understanding - Deep Learn-
ing - Computer Vision.

1 Introduction

Animation refers to a technique of modeling to create an illusion of a photo-
graphic event used in cartoons whereas animated movies refer to a sequence
of drawings. Fortunately, the wide range of techniques used to create animated
movies have been supported by the availability of larger data, more powerful
computers, and accessibility to high-level photo-realistic animation creation tools
boosted by machine learning.

The problem of distinguishing cartoons from photo-realistic movies can be
viewed as a case study of automatic video genre classification as an immensely
researched and yet to be improved subject of computer understanding. Moreover,
an animation discriminator can be a tool to serve as a discriminator in the Gener-
ative Adversarial Networks (GAN), as some studies focus on generating cartoon
sequences from photographic sequences. Thanks to improved cartoon discrimi-
nators, more realistic cartoons named Computer Generated Images(CGI) can be
created. For instance, Chen et al. designed a GAN system to create high-quality
cartoon style images from photo-realistic images [4].
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Latest technologies in Computer Generated Images (CGI) have been cre-
ating more realistic animation styles that become challenging to distinguish by
humans. An animation discrimination system can be further enhanced into a sys-
tem to distinguish even the most photo-realistic yet computer-created movies.
As Farid et al. stated, advancements in these realistic computer-generated re-
leases blur the line between reality and fantasy, and they can even cause legal
situations, such as engaging in sexually explicit conduct [5].

In this research, we have investigated if a deep learning model can distin-
guish every animated scene from non-animated ones, despite the diverse cartoon
styles created by numerous artists. Our approach is based on training a neural
network architecture trained by the scenes from trailers of the animated movie
genre and other genres. To construct our dataset, we have employed a part of
the MovieLens20M dataset which maps movie genres to YouTube trailers [7].
A trailer is divided into scenes using a shot boundary detection algorithm by
automatically splitting the video into separate clips [1]. The term segment is
used interchangeably with scene in the rest of the paper.

Once we have extracted the shot boundaries of these trailers, we eliminated
segments containing misleading information such as logo and credentials. After
the preprocessing is completed, 1447 movie segments exists in the dataset. In
order to learn a model using the deep learning techniques, we constructed an
architecture containing a Convolutional Neural Network (CNN) followed by a
Gated Recurrent Units (GRU). The data set is fed into the deep neural network
architecture incorporated CNN-GRU model. The model learned by the system
achieved promising results compared to the state-of-the-art research.

In the next section, we will give a brief overview of the related work. Section
2 will describe the dataset used in the experiments. Section 3 introduces the
methodology of constructing the model for detecting the animation scenes. The
last section concludes the paper and gives directions for future work.

1.1 Related Work

One of the first attempts to classify movie segments as either animated or non-
animated is by Roach et al. for the classification of video fragments using motion
only [13]. Their dataset consisted of only a few sequences, 8 cartoon sequences
simplified as sketched cartoons and animated cartoons, and 20 non-cartoon se-
quences where they have also classified non-cartoon genre as computer-generated
cartoons, sci-fi, and real-life motions to simplify the problem.

A hand-crafted method was suggested by Ianeva et al. [8] with accounting
pattern spectrum of parabolic size distributions to map color histograms, tex-
ture, color edges, brightness, and various image analysis filters, and trained with
Probabilistic Gaussian Mixture Model and SVM. Even though they have accom-
plished a satisfying accuracy with their trained key-frames, their model suffered
from external key-frames with divergent visual content characteristics.

Eventually, Glasberg et al. suggested a method based on MPEG-7 features
extracted from 100 representative video sequences of cartoons, and commercials
with animated cartoon sequences [6] which accomplished to classify of a sequence
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of 50 frames in one minute with 0.8 accuracy of animated scenes and 0.85 of non-
animated scenes.

To distinguish not only cartoons created by the human hand but also com-
puter graphics images, from natural photographs Ng et al. suggested a method
with accounting wavelet, geometry, and cartoon features of an image with 3200
images belonging to 4 different classes and achieved 0.84 accuracy [11]. Color
histograms and SVM were considered to classify computer graphics images from
photographic images by Chen et al. which proved that HSV color channels are
more informative than RGB color channels with slightly better accuracy and
true positive rate [3]. To extract video level features, Chen et al. used color com-
ponent and color kind based on region segmentation and proved that SVM is
better performing than GMM, and Manifold Ranking [2]. They have also con-
sidered cartoon segmentation as their features, and they have extracted their
frames from the movies with a seemingly primitive shot boundary analyzer as a
change detector.

On the other hand, Sankar et al. also considered hybrid images consisting of
both cartoon and photo-realistic segments of 557 features which can be reduced
80 without a crucial loss in performance [14]. Moreover, Ionescu et al. worked
with two sets of features namely temporal descriptors, like rhythm or action, and
color descriptors are determined using color perception to achieve an average
global correct classification up to 0.92 [9].

Initial attempts to use neural networks to classify cartoons as movie genre
was presented by Montagnuolo et al. with accounting texture information, color
histograms and temporal activity information based on the displaced frame dif-
ference which acquired average precision of 0.86 and an average recall of 0.85
[10]. Alternatively, Quan et al. accompanied CNN with four convolutional blocks
followed by two fully connected layers to achieve 0.94 accuracy on their dataset
of images with two labels: natural and computer-generated which did not include
human-drawn cartoons [12]. More recently, Zhang et al. attempted to classify
computer-generated images from RGB color channel and pixel correlation to ac-
quire 0.94 accuracy on the ScNet dataset with a convolutional neural network
architecture [16].

Most of the related work in this area either considered images or motion
separately. However, we have assembled a dataset and built a fused model that
combines both spatial information using CNN and temporal information using
GRU to attempt an improved performance on accuracy.

2 Dataset

We consider one of our contributions to the research is the construction of a
dataset composed of animated and non-animated movie trailers since there is
not a proper dataset for this specific task as we have observed. As preliminary
information, our dataset contains movie trailers with a 30 fps (frame per second)
frame rate. Since we assume that a trailer may contain both animated scenes and
photo-realistic scenes, we initially split each scene of a trailer by shot boundary
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Fig. 1: Eliminated Image Examples

Fig. 2: Kept Image Examples

analysis. In this implementation, we refer to the movie trailer partitions gen-
erated by a scene detector as scenes. Each of these scenes is represented by a
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pair of frame indices, one for the beginning and the other for the end frame. For
example, since every trailer has 30 frames per second, a pair of (360,600) refers
to the scene which is a segment of the trailer between 12th and 30th seconds.

The preparation of the dataset is followed by a several steps: (1) The initial
links from YouTube trailers are extracted from MovieLens20M with some of the
links that are unavailable due to deletion from YouTube [7]. (2) Downloaded
trailers are fed into the shot-boundary detection unit of PySceneDetect’s', Con-
tentDetector with parameters; threshold as 40.0 and minimum scene length as
1, which allows us to discriminate fade-in and fade-out in a faster way [1]. In
this step, we have also discovered that black and white trailers were not parti-
tioned due to the implementation procedure of the open-source library. However,
since black and white movies are not produced anymore and upcoming animated
movies are presumably colored, we have not addressed this issue and removed
non-animated black-white trailers from our dataset. (3) The output of shot-
boundary detection is later filtered with the removal of scenes with a length
less than 100 frames (approximately 3 seconds) and more than 1800 frames (ap-
proximately 30 seconds). This allows the later detection algorithm to be more
reliable and robust since it is a motion sensitive. (4) The downloaded trailers are
pre-processed with our model to eliminate movie trailer segments that are not
meaningful such as credential scenes, studio logos, release dates, etc. (see Fig. 1)
with a model trained to discriminate the unnecessary components.
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Fig. 3: Training and Validation Loss Fig.4: Training and Validation Acc

! http://scenedetect.com/en/latest/
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The scene detector allows trailers to be divided into intervals, mapped by the
pairs of indices which indicates the beginning and the ending frame of a scene.
However, for the fourth step, we consider image level or frame-level information
of the scene intervals and we locate the frame in the middle of these intervals.

To eliminate unwanted intervals, we first created an image dataset composed
of two classes; scenes to be removed and scenes to keep. Although the system
could be created with only one class of scenes to be eliminated; we chose frames
from the movies that might incorporate certain writings such as a closed up scene
to a newspaper, or a signboard in the background to not eliminate noteworthy
in-movie scenes (see Fig. 2). Subsequently, a CNN ResNet with 4 sequential
residual blocks of 16, 32, 64 and 128 were used to train the model and acquired
0.9412 binary accuracy on the test data (see Fig. 4). As it can be seen from 3,
validation loss decrease rate was significantly reduced after around 30th epoch.
Although over-fitting after 30th epoch may seem as fast learning, this task can
be considered simple enough to be learned in 30 epochs.

After the model is saved, every scene interval is passed through the model to
either keep or remove. Lastly, black-and-white movie trailers are removed from
the system and the dataset ended up with 1447 scenes in total that belongs to
234 video trailers. Half of these trailers are labeled as cartoon and the other half
includes any other genre that is located in MovieLens20m. 117 movie trailers
labeled as adventure, comedy, fantasy, children, romance, drama, action, crime,
thriller, horror, mystery, sci-fi, documentary and musical genres are all labelled
as non-animated movies. We labeled all of the trailer segments as their ancestors
trailers (which they are partitioned from).

3 Methodology

Video processing can be considered as a tedious problem by computer engineers.
Every frame is represented by a large number of pixels, which is the product
of the height and the with of an image. Further, it is an even slower process
considering that every second of a video is represented by 30 frames. For our
model, we have prepared our own data generator in which we have optimized the
video processing speed during learning period with a library called Decord?. The
generator generates features for the model with dimensions of number of frames,
image width, image height, number of channels (RedGreenBlue or RGB).

Since we split each trailer into several scenes, we considered each of the
scenes as a different batch of the same genre. For each scene, we have extracted
a set of sequential frames to be used in our model. There are various ways to
implement the frame extraction method, however, we used division of each scene
to a constant number of frames so that we can record the motion of scenes of
different length. Our method involves a simple partitioning of the scene to an
equal number of the frames explained in equation 3.

2 https://github.com/dmlc/decord
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5CENCeng + SCENCgare — frame_rate?

Parstart = 9 (1)
SCENCepg + SCENCgart + [ rame_rate®

PQTend = 9 (2)

f’l“ame,list = (XpaT’StQT»t7 Xparsmrt—f—frame,ratea cr Xparend) S (3)

scenegiqre - scene start frame index
sceneenq : scene end frame index
Parsiqr¢ - partition start frame index
Parenq - partition end frame index
frame_rate : how many frames will be produced (given by user)

frame_list : the frame list we end up with

In this equation, partition start refers to the starting point of the partition,
which is calculated by the scene end point and the scene start points for each
of the scene. This equation also allows us to partition the middle section of the
scene with an optimum frame rate to reduce any misinformation frames caused
by scene changes, such as fade-in or fade-outs. Partition end refers to the where
the partition ends, and these frames were chosen with equal distances of frame
rate. Frame rate corresponds to the how many frames will be extracted with this
algorithm as an end result.

It is crucial to choose how many frames will be fed into the network since
the motion is measured by the change between frames of the same scene. Our
system allowed us to work with only even numbers because we divided each scene
according to equation 3. Thus, we have experimented with a 2, 4, 6, and 8 for
frame rates, and concluded that 2 is too short to give information about motion
and 8 is too long that the difference between frames did not change much. Thus,
a frame rate of 4 is found to be sufficient for capturing the motion and there is
a noticeable change between the frames of the same scene.
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Fig.5: Fused Model Architecture

To capture both spatial and temporal information, we have used 3 blocks
of time distributed CNN with 32, 64 and 128 filters of 3 by 3; followed by a
GRU of 16 units (see Fig. 5). We have also experimented with higher number of
GRU units which resulted in poor results. To prevent fast over-fitting, we have
accounted 11 and 12 kernel regularizers, and we included a batch normalization
layer with momentum 0.9 after each convolutional block and a dropout layer.
For hidden units, we have used relu activation. For the final Dense layer, we have
used sigmoid since we give only one output which calculates the probability of
the scene as cartoon with values close to 1.0 or photo-realistic with values close
to 0.0. We have used Adam Optimizer with 0.0001 rate, loss function as binary
crossentropy and metric of evaluation as binary accuracy.

To accelerate the learning process, we used EfficientNet architectures, which
is proved to be very shallow and fast, yet achieves high top-l-accuracy on the
ImageNet dataset and a state-of-the-art accuracy on 5 other transfer learning
datasets, with an order of magnitude fewer feature size [15]. The main reason to
use this transfer learning network is being explanatory for frames and efficient
enough to execute in a Time Distributed fashion, since we need to apply it to
every time frame extracted from a scene. We have also considered a few other
transfer learning techniques, such as Residual Network (ResNet) and Very Deep
Convolution Network (VGGNet). However, these models are not meant to do a
profound search for objects in animated scenes and they demonstrated fast over-
fitting learning due to their depth, without providing significant improvement
on the validation set. Thus, fewer convolution layers are found to be helpful to
discriminate cartoons from photo-realistic scenes.



Detection of Animated Scenes Among Movie Trailers 187

4 Results and Evaluation
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Fig. 6: System Prediction Results

In the training step, 1258 scenes extracted from 200 trailers are used to
train and 189 scenes extracted from 34 trailers are used to validate the system.
To prevent the testing of the model from a trailer scene that is already in the
training data, trailers are separated as training and validation beforehand.

Some prediction examples of our final model is given in Fig. 6. We have
labeled the animated scenes as label 1 and the non-animated ones as 0. The
prediction result of a scene is an approximation of the probability of being
labeled as animation. Our architecture is successful in detecting complex and
crowded scenes such as Fig. 6.f. Despite low background information given in
some photo-realistic scenes, the system could distinguish cartoon characters from
photographic humans as it can be seen in Fig. 6.e.
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On the other hand, there might be both animated scenes and photographic
ones in the same trailer, and since we have labeled each scene of a trailer as the
same label as the trailer, the labels were not provided to the system concisely.
Consider the example given in validation set in Fig. 6.b, the scene that the
trailer belongs to is a cartoon, but the scene itself is photographic. There are
some scenes in the photo-graphic movie trailers that can resemble an animated
scene like in Fig. 6.i. On the other hand, our model is successful in discriminating
photo-graphic landscape in Fig. 6. a vs animated landscapes in Fig. 6.c-d, and
could classify foggy scenes such as Fig. 6.g. Despite the challenging scenes we
have given as examples, our model acquired 0.9552 binary accuracy on our
test set in 12 epochs which can be considered an outstanding result compared to
the state-of-the-art. After 12 epochs, the over-fitting was observed and validation
loss increased, although the training loss kept declining.

5 Conclusion

In conclusion, we have proposed a scene classification method of trailers with
labels of either cartoon or photographic. We first built our dataset on top of the
open-source dataset MovieLens20M, and segmented each trailer into scenes with
shot-boundary detection. After pre-processing each scene with the elimination of
inconsequential scenes and identifying several frames, we have trained our model
involving CNN followed by GRU units and used transfer learning to advance the
training process.

As our future work, we aim to increase the size of our dataset and evaluate
the results of our model on other datasets. We also plan to use other transfer
learning techniques and other video reading techniques to increase the efficiency
of working on video data, since the training takes a long time. Moreover, we plan
to use audio features and experiment if these features can further improve the
reliability of our system.
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Identifying and Analyzing Communities within a
Social Network using Automatic Topic Labelling:
Application to the Enron Dataset

M. Zakaria Kurdi
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Abstract. A social network is typically made up of communities of users. Detecting
such communities is an important task to identify users with shared interests and
predicting their behavior. Several previous approaches to detect the communities
based on the formal properties of the communities’ subgraphs were proposed. The
main assumption in this paper is that, within the context of a professional social
network, communities are formed around a shared interest. Therefore, topics are used
to identify the communities. This paper shows that the communities identified by
topic do meet the formal requirements of a community by having a high modularity
score. Besides, it is shown that creating communities based on topics improved our
understanding of key aspects of the social network, like community overlap, User
Topical Specialization (UTS), and topical seasonality.

Keywords Topic Modeling, Social Media Network Communities, Topic
Seasonality, Community Overlap, User Topical Specialization

1 Introduction

Detecting the communities within a social network is an important task because it allows
identifying users with shared interests and predicting their behavior. Depending on the type
of the social network, there are several definitions of the concept of community. Formally
speaking, a community within a social network, sometimes called a cluster, is a sub-
network where there are dense links internally but that is connected with other communities
with external links of lower density.

Different approaches have been proposed in the literature to identify communities or groups
of users within social networks using formal criteria like the one above. Such approaches
suffer from several limitations. First, they are not good at telling whether a user of the social
network belongs to multiple communities (Xu and Hui, 2019). Second, these formal
methods do not give insight about the nature of the interactions within a community or the



192

relationships between communities. Other approaches have used shallow definitions of
topics, that are usually based on Latent Dirichlet Allocation (LDA) or one of its variants
(see for example (Zhang et al., 2007) and (Yin et al., 2012)), therefore these approaches did
not explore the full extent of the relations between topics and communities.

To overcome the above limitations, this paper explores using human interpretable topics as
a means of community identification. Hence, communities are defined as a group of users
that exchange information on a specific subject or topic. It is showed that topical
communities also meet the formal requirements of a community, as this follows the
intuition that people with the same professional specialty tend to exchange more
information than people with different interests do. Even outside professional networks like
the Enron email set that is investigated in this paper, it is hard to imagine the idea of
community being entirely separated from the topics of interest of its users. In other words,
regardless of the way a community is identified it is essential to understand the topics
addressed within a community and their semantic relationships between each other. It is
also essential to understand the relationship between the users and the topics. For example,
at the sociocentric level, topics allow to easily measure and understand the overlap between
communities as well as topic seasonality, in relation with the year calendar. At the
egocentric level, using topics to detect communities allows measuring the degree of
specialization of a given user and helps us understand the seasonality of the involvement
of specific users in some tasks that are related to the used topics.

This paper is organized as follows. After presenting the existing literature in section two,
section three presents the Enron Corpus and shows the steps followed to build the graph of
the social network and automatically annotate it with topics. Sections four and five are
about the analysis of the topical communities from a sociocentric and egocentric
perspective, respectively.

2 Related Work

Several works focused on labelling social networks with topics. For example, McCallum
et al. (2007) proposed the Author-Recipient-Topic model, a Bayesian network for social
network analysis that discovers discussion topics conditioned on the sender-recipient
relationships in the Enron corpus. This model combines the directionalized connectivity
graph from social network analysis with the clustering of words to form topics using
probabilistic language modeling. Cha and Cho (2012) discussed how to extend probabilistic
topic models to analyze the relationships within the graph of social networks. They applied
LDA and showed that it does not apply well to labelling popular nodes within the social
network. Kalinowski and Kurdi (2019) compared the Term Frequency (TF) method, used
as a baseline, with LDA combined with WordNet as well as two versions of conceptual
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topic detection, both involving a version of keyword extraction combined with WordNet.
The results showed that LDA combined with WordNet has the highest precision but a
comparable F-measure to the conceptual approaches (around 60%). They also showed that
topic labelling of social network shed light on both quantitative and qualitative relationships
within the networks. Hagerer et al., (2021) showed that opinion-mining methods based on
word embedding could be used to display correlated topic models on social media using an
interactive visualization toolkit called SocialVisTUM.

Some works, like the one by (L Huillier et al., 2011), used LDA to tag the texts of a forum
with two categories. The tagged text is then used to identify and extract key-members
within extremist groups. Others like (Sun and TY Ng, 2013) relied on a graph model of the
most influential posts per topic. This graph is then transformed to a user graph to identify
influential users.

Several algorithms have been proposed in the literature for community detection. One of
them is based on betweenness centrality. This algorithm is an iterative approach to remove
edges from the network to split it into communities. The removed edges are identified using
betweenness measures (Newman and Girvan, 2004). Another method, called WalkTrap, it
uses random walks on a graph to detect communities (Pons and Latapy, 2005). This
algorithm starts with a selected node and goes to a neighboring node chosen randomly and
uniformly. It then proceeds similarly to the next node. The number of steps of this algorithm
is called the walk length. With an appropriate length, typically not too long, it can gather
community information. Label propagation is another method, which is based on a semi-
supervised machine learning that is initialized with a small subset of labelled data. The
labels are then propagated iteratively to the unlabeled neighbors. The communities of edges
will emerge under a common label (Raghavan et al., 2007). Matrix Blocking was used for
community detection (Chen et al., 2012). This technique consists of constructing a tree
hierarchy to order the nodes in a network and extract dense subgraphs as communities.
Previous approaches to community detection suffer from a significant limitation, as they
adopt strict borders between communities. This means that a user can only belong to a
single community, which is not realistic in many social networks. To overcome this
limitation, Saha et al. (2011) proposed a fuzzy clustering-based approach for community
detection in a weighted graphical representation of social and biological networks. Another
solution to this problem was proposed in (Xu and Hui, 2019). Their approach uses a method
called the Partial Community Merger Algorithm (PCMA) with linear complexity. PCMA
consists of three steps. First, it finds partial communities in the network, then it merges the
related partial communities into completely merged communities, and finally it cleans up
the noise accumulated in the merged communities to get the complete and cleaned-up
communities.

Several works used a shallow sematic framework, typically LDA, to discover communities.
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For example, Zhang et al. (2007) proposed a hierarchical Bayesian algorithm based on LDA
to model communities as latent variables in the graphical model and are defined as
distributions over the social actor space. Yin et al (2012) incorporated community
discovery into topic analysis and proposed a community-based topic analysis framework
called Latent Community Topic Analysis (LCTA). Their work assumes that community
and topic are different concepts. Wang et al (2019) conducted a cross social network study
to discover hot topics. First, they fuse text data from different social networks into one
unified model. They get latent topic distribution from the unified model using the Labelled
Bi-term LDA (LB-LDA). Based on the distributions, similar topics are clustered to form
similar topics communities. Finally, based on the scores, the hot topics are chosen. In
summary, no previous works have substantially explored the semantic nature of the
communities or their relationships.

3 Network Building and Annotation with Topics

3.1 The Enron Corpus

Enron emails are a freely available corpus. The Federal Energy Regulatory Commission
obtained it during its investigation of Enron's scandal!. This corpus is made of about
500.000 emails (1.32 GB of raw data) from 150 authors (Klimt et al., 2004), (Keila et al.,
2005). This corpus is particularly relevant to this study because it represents interactions
within a work environment, where it is easier to determine the key topics addressed during
the exchanges between the employees.

3.2 Data annotation

A subset of 3800 emails from the Enron corpus were manually annotated (Kalinowski and
Kurdi, 2020). A schema of seven topics was proposed: meeting, management, IT, leisure,
stock, accounting, legal, and other, “other” being about emails of different topics that are
not covered by the seven adopted topics. There are several unsupervised out off-the-shelf
algorithms such as TF-IDF, K-means or LDA that can be used for topic annotation of texts
(Kalinowski and Kurdi, 2019), (Halabi et al., 2010), (Blei et al., 2003). These approaches
are generic by nature and do not give specific topics; therefore, they cannot provide the
precise information needed for the network annotation. Hence, building a special module
that is trained to annotate the texts with our set of topics is necessary. This is a challenging
task because, as we can see in the figure 1, the adopted scheme does not cover all the emails:
the category “other” has a large number of emails. Besides, some emails have content that
spans over multiple topics.

! https://en.wikipedia.org/wiki/Enron_scandal
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Given the significant imbalance of topic distribution, using machine learning to learn the
topic becomes a challenge. To increase the accuracy, the topics leisure and stock were
discarded because of the limited number of emails from these topics and because these
topics are not central to understanding the work hierarchy within Enron.

Accounting Stock

Lezal a% 1%
1% S "

Other Management

32% / 53%

\'r/
a9 |

Leisure
5%

Fig. 1. Email distribution by topic in the Enron data set

3.3 Machine Learning Experiments

Several machine learning experiments were conducted. First, five classic machine-learning
algorithms were used: Random Forest, Bagging, Bayesian Network, Logistic Regression,
and Perceptron. The features used with these algorithms were keywords with the highest
overall TF-IDF score. Experiments with 500, 1000, and 1500 keywords were conducted.
The results of these experiments are presented in table 1.

Another experiment was conducted with a Convolutional Neural Network (CNN) with 300
embedding dimensions, 5 convolutional layers, and trained with 35 epochs. The f1 score
was around 22%; the results were not high because of the limited size and the imbalance of
the data.

The entire corpus was labelled with topics using the Random Forest Algorithm trained with
1000 words, which gave the best results. The network’s graph was built after excluding all
the emails with missing key information for the network, like date, sender, or destination.
Therefore, the overall graph ended up being built with 405,018 emails. The topical graphs
were built by considering the emails that were tagged with the targeted topic.
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Table 1. F1 score of the classic machine learning experiment

# Key Words ML Algorithm F1
Random Forest 61.4
Bagging 62.2
500 Bayesian Net 31.4
Logistic Regression 60.7
Perceptron 28.9
Random Forest 65.8
Bagging 62.9
1000 Bayes 38.2
Logistic Regression 61.6
Perceptron 18.01
Random Forest 60.1
Bagging 58.9
1500 Bayes 38.0
Logistic Regression 57.9
Perceptron 26.0

4 Sociocentric Network Analysis of Topical Communities

Examining the sociocentric activities within the social network is a way to make general
observations about the structural and functional tendencies within this network as a whole.

4.1 Quality of the Topical Communities

Using topics for network clustering into communities seems to be sound from an intuitive
point of view. However, one might wonder if the topical clusters meet the formal
requirement of being highly connected internally. To answer this question, modularity, a
common criteria for evaluating the quality of clusters (equation 1) (Clauset et al., 2004), is
used.

1 ) kyky |
g= 2m Z[Am _#]O((T“ “w) 1)

vw

where A is the adjacency matrix of the network, m is the number of edges and 2m is the

total number of stubs, ky and ky are the degrees of the nodes v and w respectively,k’;:;‘” is
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the probability of an edge existing between the nodes v and w; the 3-function 6¢i, j) is 1 if i
= jand 0 otherwise.

The modularity of the entire network, broken down with betweenness and with topical
communities is presented in table 2.

Table 2. Modularity of the communities

Topic/Community Q

Overall (with betweenness)  0.586
meeting 0.731
accounting 0.888
management 0.612
IT 0.800
legal 0.689

According to (Clauset et al., 2004), a Q value greater than 0.30 is enough to claim there is
a community. Hence, all the Q values in table 2 are significant enough to say that we have
communities. The modularity of the topical communities is higher than the modularity of
the overall graph. Also, specialized communities such as accounting and IT have a higher
modularity than more generic topics like management.

4.2 Community Overlap and Inter-community Relationships

Two ways of measuring community overlap are proposed in this paper. First, overall
overlap is measured as the network homogeneity. Homogeneity being about how evenly
the emails are distributed over all the topics/communities. In a perfectly homogeneous
network, the probability of an email belonging to any topic is the same. Hence, entropy is
a natural measure of the overall homogeneity of the network (equation 2).

I7]
Hom(G) = — Z})/ log P, )
t=1
where G is the graph of the network, [T| is the number of topics, and t is a given topic.

The homogeneity of the entire Enron network is 1.317. The theoretical maximum of the
entropy is 1.609, which means that the Enron’s network is highly homogeneous.

Another way to look at the community overlap is by examining the overlap between the
pairs of communities. The interest in a topic t is measured as the number of emails sent by
a given user p about t. To measure the overlap, Goldberg and Kelley (2011) proposed using
the cosine distance between key influential users within a community and a random user.
This measure requires identifying the influential users, which is not an objective criterion,
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since there are several alternative methods in the literature. In this paper, Kendall Tau rank
distance is used. This distance is a metric that counts the number of pairwise disagreements
between two ranking lists: Tl and t2. Therefore, the distance k(t1, t2) ranges between 1,
when the two lists are identical, and -1, when they have reverse order (equation 3). Given
its simplicity, this measure is more robust and provides a more objective account of the
overlap than the cosine distance between influential users.

A-(Tl, T;)) = Z{i, fien ﬁi, j (TI’ T2) 3)

where P is the set of unordered pairs of distinct elements in t; and 2. kij (T 7o) s equal
to zero when i and j are in the same order, and it is equal to one when they are in the opposite
order.

To calculate the Kendall’s Tau distance, the users are ranked within each community by
their number of contributions. Then all the pairs of communities are compared. Since not
all users are part of all the communities, the non-assigned users are given the lowest ranks.
The results are presented in table 3.

Table 3. Kendall Tau distances between the topics

Community i Community j Kendall’s Tau p Value
accounting IT 0.0329 3.30E-53
management IT 0.0075 0.0004
legal meeting 0.0075 0.0004
legal IT 0.0071 0.0008
accounting legal 0.0070 0.0010
accounting management 0.0036 0.0869
IT meeting 0.0034 0.1071
management meeting 0.0024 0.2585
accounting meeting 0.0021 0.3114
management legal 0.0005 0.8148

Five pairs of communities have significant Kendall’s Tau distances. Even in the case of
significant distance, the value is not very big. This pattern is easy to explain given the
relation between the topics. For example, the relationships between IT and accounting are
the strongest, which is understandable given that accounting relies heavily on software. On
the other hand, the people who post about IT don’t necessarily post about meetings, that is
why this pair is not significant.

4.3 Community Activity Seasonality
The goal of uncovering community activities seasonality is to show the underlying patterns
behind every topic in relation to the calendar. The basic assumption here is that seasonality
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is related to business activities typically achieved in specific months of the year. The graphs
of the monthly averages of emails by topic are presented in figure 2.
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Fig. 2. Monthly averages of emails’ numbers by topic

As we see in figure 2, although the seasonality of the emails by topic is affected by the
general seasonality of the emails, we can also see that some topics have their own
specificities. For example, in December the number of emails from all the topics decreases
because of the holidays. Accounting is the only exception in this month, which gets more
emails because more work needs to be done at the end of the fiscal year. The same goes for
January, where, unlike the general trend, accounting has higher activities because in this
month accountants are typically very busy working on tax returns. IT is another exception
for January where there is a significant increase of emails. This is related to the New Year’s
security instructions and updates. Besides, we are witnessing more regularity with the
topics management and meeting, while the monthly differences are more extreme with the
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topics legal, IT, and accounting. This shows that some topics have more substantial monthly
seasonality than others do.

5 Egocentric Network Analysis within Topical Communities

Examining the social network at the level of a specific user helps identify those users who
play an important role in a given process.

5.1 User’s Topical Specialization (UTS)

Tagging the social network with topics leads to the key question of user topical
specialization. It is essential to know who plays a pivotal role in a given process to
understand the hierarchy within a social network. Let M = {m1, m, ..., mn} be the group
of messages sent by an active user p. The user p being active, we can assume that n>0. Let
T ={ty, to, ..., tm} be the topics addressed within the entire social network where m>=1.
Let r c T to be the subset of topics covered in the emails sent by p. Hence, |z] can have
between 1 and m topics. Therefore, a user p is said to be perfectly specialized if |z]|=1, pn
only sends messages about a single topic. The bigger the |z| the less specialized is p.

A measure of User Topical Specialization (UTS) is proposed in this paper (equation 4). In
equation 4, if |t|=1, this is the highest level of topical specialization, so the entropy is zero
and UTS=1 in this case. On the other hand, if |t{]=m then the entropy is maximal, which
diminishes UTS considerably.

uTts — 1

7l
(Z —p(t;)*log p(t;)+1 (4)
=1

The UTS values of some selected users are presented in table 4.

Table 4. UTS values of selected users and the number of emails per topic

email uTsS Meeting Acct? Mgmt. IT legal
kay.mann@enron.com 0.756 331 15 3867 15 0
alan.comnes@enron.com 0.758 12 2 234 4 0
dana.davis@enron.com 0.720 3 0 20 0 0
infrastructure.ubsw@enron.com  0.577 19 2 44 0 0
brian.schwertner@enron.com 1 0 0 19 0 0
robert.lloyd@enron.com 1 0 0 160 0 0

2 Acct. stands for accounting and mgmt. stands for management
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As seen in table 4, some users are more focused on a limited number of topics while the
emails of the others are scattered across the topics. The average UTS is 0.822 with a
standard deviation of 0.196. This indicates that the users tend to be specialized but still most
users contribute to more than one topic. An important conclusion that we can draw from
table 4 is that belonging to a community is not necessarily binary, as the same user can
belong to different communities with different levels of involvement.

5.2 Clustering Coefficient of a Node

The clustering coefficient (equation 5) is a measure of how the neighbors of a user’s node
within the social network’s graph can form a complete subgraph or clique. Within the
perspective of communities clustering, this coefficient allows one to see if a given user has
a higher clustering coefficient within a given community than within the others. This is
another way to compare the significance of the involvement of a specific user within every
topic, except that here we do not get an overall measure like with UTS but rather individual
scores for each community.

2L
S k= 1) ®)
where k; is the degree of node i and L; is the number of edges between the ki neighbors of
node i.

The clustering coefficients of five selected users are provided in table 5. As we can see in
this table, most users have a higher clustering coefficient in some communities than in
others. No user has a high clustering score within all the communities. For example, Julie
Clyatt has a high clustering connection within management but not within the other topics.
This confirms the tendency among the users of Enron’s network to be specialized.

Table 5. Clustering coefficient of key users in the topic graphs

User’s Email Meeting Accounting Management IT Legal
kay.mann@enron.com 0.01 0 0.013 0 0
julie.clyatt@enron.com 0 0 0.044 0 0
jeff.dasovich@enron.com 0.013 0 0.013 0 0
john.arnold@enron.com 0.009 -1 0.017 0 0
phillip.allen@enron.com 0.011 0 0.011 0 0

5.3 User Topical Seasonality

Uncovering the interests of a user across a given period can give useful insights about the
centers of a user’s interests and activities. In figure 3, the percentages of involvement in the
topics of six selected users are depicted during the twelve months of the year.
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In figure 3, we can see that some users, like Jeff Dasovich have an almost constant interest
in some topics across the year (management and meeting) while others have a seasonal
interest in one topic. For example, Julie Clyatt is showing a diversified interest across the
year, except that for accounting, she has a substantial involvement in accounting in January
but not in any other month. Some users like Philippe Allen, show regular activity with some
variation across the twelve months, while others like Jerry Graves are only active for six
months. Although users are active over the twelve months, one can see a reduction in
activity in the months of July, August, September, and December.

6 Conclusion

This paper is about using topics to identify communities within the Enron social network
of emails. As shown in sections four and five, using topics to create the communities has
several advantages compared to formal ones. First, it is naturally adapted to deal with
overlapping users who belong to multiple communities. Second, given the known semantic
relationships between the communities’ topics, it is easier to understand the nature of the
communities and their relationships with each other. At the sociocentric level, it was shown
that the topical communities have a significant modularity score, which suggests that the
topic community meets the formal connectivity requirement. Entropy and Kendall-Tau
distance were used to provide insights about inter-community relationships. Finally, a
measurement of the seasonality of the topics showed that the communities are not equally
active across the months of the year and that there are some patterns that are easy to connect
to the normal work calendar in the US. At the egocentric level, a new measure of user
specialization was also proposed. This measure provides a quantitative evaluation of the
dedication of a given user to a single community.

In the future, further investigation of other types of networks, such as Twitter, could help
test the proposed approach on a different type of social network, where topics are broader.
Topic communities can be refined using other NLP tools like sentiment analysis and
opinion-mining. For example, within a network, one can identify a community that is
interested in soccer. Then, within the soccer topic, supporters of specific teams can be
grouped into sub-communities using opinion-mining techniques.
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Abstract. Existing machine learning models for crop yield prediction, model en-
vironmental data on the assumption that soil variables are unaffected by weather
variables, and therefore learn their intrinsic features independently. If the focus
of crop yield prediction is aimed at supporting smallholder farmers in making
farming decisions, then modelling the environmental variables independently
might not be informative for the farmer. In this paper, we propose a comprehen-
sive machine learning based crop yield decision support tool for smallholder
farmers. It comprises of predictive machine learning models that model the dy-
namic interactions between environmental variables, for predicting crop yield at
the level informative to a smallholder farmer. Then, the best model is integrated
to a mobile application with farmer education and market access modules, to pro-
vide the smallholder farmer with a tool that enables him/her to ‘farm smart’. From
evaluation of our random forest regressor (RFR), extreme gradient boosting re-
gressor (XGBoostR), and multi-layered perceptron regressors (MLPR), using the
mean squared error (MSE) metric which quantifies the average of the square of
the error, the values of 0.0075 t/ha, 0.1416, 0.3031 t/ha were achieved, respec-
tively. This shows that the RFR model provides the minimal error between the
predicted and ground truth crop yield values.

Keywords: maize, crop yield prediction, machine learning, decision support
system, Sub-Saharan Africa

1 Introduction

Although over 60% of the population of Sub-Saharan Africa are engaged in small scale
farming [1], agriculture only contributes about 23% of the region’s GDP [1]. The ina-
bility of Africa’s smallholder farmers to substantially drive Africa towards food secu-
rity as expected [2], might be a consequence of socio-economic and political factors at
the secondary level [3]. Additional factors may include a lack of farming education,
limited access to market, lack of precision driven farming technology, and others at the
primary level [4]. In this paper we argue that the smallholder farmer can leverage tech-
nology available to him/her to overcome farming limitations arising from factors at the
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primary level. Subsequently, we discuss the technological advancement in precision
farming and examine the current role of mobile technology in agriculture as it pertains
to the smallholder farmer. The paper is structured as follows: Section 1 outlines the
relevant background situation in African farming, in section 2 we describe the method-
ology employed, while section 3 covers the modelling undertaken and results obtained.
Finally, in section 4 the Conclusion, we summarize the findings of the paper.

2 Background and way forward

Technological developments are currently enabling radical transformations in precision
agriculture. Technologies in the form of robots [5], sensors [6], drones [7], and data
analytics through machine learning [8-16] are driving agriculture towards smart farm-
ing. Most of these technologies are costly and out of the reach of smallholder farmers.
However, data analytics through machine learning can provide the smallholder farmer
with inexpensive decision systems that can help him/her to estimate yield during a crop
growing season. There are two main directions in crop yield predictions: plant genotype
data driven yield prediction [8, 10] and environmental data driven yield prediction [11-
16], or a combination [9]. The genotype data is concerned with the interaction of plant
genes and the environment and the results for farm produce. Genotype data are scarce,
and also require rigorous collection and analysis, which may present a challenge for
many farmers. On the other hand, environmental data can be made readily available to
farmers, and offers rich information useful for crop yield prediction.

2.1 Machine learning for modelling crop yield

Machine learning algorithms have in recent years been increasingly applied to uncov-
ering the nonlinear relationship of environmental variables as predictors of crop yield.
In 2016 Jeong et al. [11] trained the random forest (RF) machine learning algorithm for
crop yield prediction for evaluating food security at the regional and global scales.
Later, in 2020, Alhnaity et al. [12] applied the Long Short-Term Memory (LSTM) for
predicting tomato yield for crops grown indoors in controlled environments. In the
same year Khaki and Wang [13] trained a deep neural network (DNN) for predicting
maize yield. Their DNN comprised of 21 hidden layers with 50 neurons in each layer.
Training employed data of 142,952 samples of maize plant genotypes, along with
weather and soil variables. In [14] two convolutional neural networks (weather convo-
lutional neural network W-CNN) and soil convolutional neural network S-CNN) were
created for modelling temporal and spatial data for weather and soil. The extracted fea-
tures for weather and soil, emerged from the fully connected (FC) layer of the network.
Then, historic crop yield, modelled as a time dependent variable, along with the output
of the FC layer and management data, were fed to a recurrent neural network (RNN)
for forecasting yield. In [15] a feature selection approach is used to identify important
weather, soil, and management variables, and their interactions, which were fed to a
multiple linear regression model for predicting corn and soybean yield. An ensemble
machine learning model that combines linear regression, LASSO regression, Extreme
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Gradient Boosting (XGBoost), LightGBM, and random forest was proposed in [16] for
corn yield prediction. In 2021 Shahhosseini et al. [17] modelled yield by building two
convolutional neural networks, W-CNN and S-CNN for modeling weather and soil re-
spectively, and a deep neural network (DNN) for representing the management data.
The latter were collected at the fully connected (FC) layer of the network. This model
was used to construct a homogeneous ensemble model by varying the data set using
bootstrap sampling while the heterogenous ensemble model was created with the use
of different hyperparameters.

Most of the literature has modelled crop yield under the assumption that environmental
variables occur independently of each other. For instance, they assume that soil is un-
affected by weather and therefore are focused on learning the intrinsic features of
weather and soil variables independently. However, the interaction between climate
and soil is an integral part of plant growth [18]. Also, previous work has approached
crop yield from a regional or global perspective, with the goal of informing food poli-
cies and providing a mechanism for countries or The World Bank to use in appraising
food security. However, if smallholder farmers are provided with predictions of crop
yield, this can empower them to make better farming decisions, such as determining
whether a given farmland has the potential to meet the anticipated yield capacity for a
given planting season. Therefore, in this study we propose a comprehensive machine
learning based crop yield decision support tool for smallholder farmers. It comprises of
1) a crop yield predictive model developed with machine learning techniques and com-
bining environmental data to model the dynamic interactions between environmental
variables, and 2) a mobile application for farmer education and market access which
integrates predictive models to provide the smallholder farmer with a tool that enables
him/her to farm smart at a low cost. The benefit that the proposed system provides for
the farmer is the ability to utilize information from his/her farm for determining the best
ways to maximize crop yield, thereby eventually improving and maintaining food pro-
duction. Most farmers in Africa currently lack the ability to reach the market directly
without third party buyers. The proposed system’s market access platform will help
smallholder farmers manage farm produce from farm to the market, in order to prevent
food waste.

3 Methodology

3.1  Study region

We used Nigeria as the case study for Africa. Nigeria [9.0820° N, 8.6753° E] is located
on the west coast of Africa with an arable land of 341 million [19]. Around 87 percent
of Nigeria’s households in the rural regions are smallholder farmers [20] who farm at
least one of the major crops in Nigeria, (the latter comprising maize, cassava, guinea
corn, yam beans, millet, and rice, and half of these farmers are corn growers). There are
36 states in Nigeria, of which the most and least number of districts in each state are
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214 and 10, respectively. The data considered in this study are weather, soil, maize crop
yield, and hectare. Further details relating to the data include:

» To extract the environmental data from the grided soil and climate Africa
maps, each state’s latitude and longitude information were retrieved from
Google Maps.

» Historical climate data were collected from WorldClim [21], which is a data-
base of high spatial resolution global weather and climate data. Their grided
map data is comprised of eight weather variables, namely: average tempera-
ture, minimum temperature, maximum temperature, precipitation, solar radia-
tion, wind speed, and water vapor at 30s, 2.5m, 5m and 10m spatial resolutions
from ~1 km? to ~340 km?. At each grid point, monthly weather data (that span
a 30 year period between January 1 to December 12 of each year) are given as
averaged readings per resolution.

»  We collected historic yearly corn yield data, along with the data on the size of
the cultivation area of land measured in hectares, from 1960 to 2006 for each
of the 36 states of Nigeria from [22], under a subscription.

» The grided soil data provided by AFSIS [23] at spatial resolution of up to
250m included wet soil bulk density, dry bulk density, clay percentage plant
available water content, hydraulic conductivity, upper limit of plant available
water content, lower limit of, organic matter percentage, pH, sand percentage,
and saturated volumetric water content variables measured at depths 0-5, 5—
10, 10-15, 15-30, 30-45, 45-60, 60-80, 80-100, and 100-120 cm. Using the
longitude and latitude information, the point soil values at specific district lo-
cations for each of the 36 states in Nigeria were extracted. This data spanned
between 1960 to 2012.

*  We used ARCGIS professional 2.5 to extract the point values for the climate
and soil environmental data from each district within the 36 states of Nigeria.

3.2  Data Preprocessing

Given that data were acquired from different places, there were inconsistencies in the
number of years between the climate, soil, hectare and crop yield data. For instance, the
historic crop yield data covered between 1995 to 2006 and soil between 1960 to 2012.
There was also the problem of missing values and numerous variables, of which only a
few might be relevant to the task at hand. For these reasons we applied statistical and
machine learning techniques to address these problems. Below are the algorithmic steps
used in preparing the data.

The Algorithmic Steps
i Average the values of weather, and soil variables across spatial resolution and
the measured depth, respectively.
ii. Forecast crop yield and hectare by six timesteps to correspond with the last
timestep of soil data using the autoregressive integrated moving average
(ARIMA). Then, average into a single value for a state.
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iii. Merge all the environmental data into a single dataset, remove missing values
and manually select variables that can easily be measured by the smallholder
farmer. After missing values were removed, only 23 states which are (Abia,
Abuja, Akwalbom Anambra, Bayelsa, Benue, Crossriver, Delta, Ebonyi, Edo,
Ekiti, Enugu, Imo, Kebbi, Kwara, Lagos, Ogun, Ondo, Osun, Oyo, Plateau,
Rivers, Taraba) environmental variables are represented.

iv. Measure the association between environmental variables from (iii) to identify
variables highly associated with crop yield using the Kendall correlation (KC)
technique.

3.3 Predicting Future Crop yield

We used the ARIMA model for forecasting crop yield in six (6) year timesteps. The
ARIMA model is a simple machine learning technique that lends itself to solving non-
complex time series prediction problems. By non-complex, it is meant that the time
series data is non-seasonal and exhibits patterns. This model combines both auto re-
gressive (AR) and moving average (MA) models to predict future points for a given
time series based on its past observations and random errors. ARIMA is characterized
by three terms: p is the AR order term which signifies the number of prior values to be
used as predictors in the model, d is a parameter for making the series stationary, and q
is the MA order term which indicates the number of forecast errors of prior values the
ARIMA Model needs in order to predict future points in the series. The combination of
the AR and MA models to form a ARIMA model is mathematically expressed as [24]:

Vo=a+ By +BYen + BpYep €+ Dr€c g+ Da€rp + -+ Dy g

where a is a constant, €, is the error term at time t, By, B, B3, -, Bpare the AR param-
eters, and @,, @, @3, -+, @, are the MA parameters and are combined to form Y,, the
future points in the series.

Typically, to predict future data points of a time series data using the ARIMA model,
the stationarity of the series data will have to be tested using the Augmented Dickey
Fuller (ADF) test [25]. The null hypothesis of the ADF test indicates a non-stationary
series. However, if the p-value of the test is less than the significance level (0.05) then
the series is considered stationary. With a given stationary series, the values of p and q
terms can be determined by observing the values above the significance limit of the
partial autocorrelation function, and autocorrelation function plots [25], respectively.

The crop yield and hectare values covered 12 years for the 36 states of Nigeria. The
(p,d,q) terms were modified based on the ADF test, partial autocorrelation function
plot, and autocorrelation function plot for each of the state series values. For instance,
the (p,d,q) terms for predicting crop yield and hectare future data points for Ogun,
Anambra, and Taraba states are (5,0,1; 5,0,1), (2,1,1; 1,0,1), (2,1,1;10,1) given their p-
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values of (0.000000; 0.000000), (0.343881; 0.997572), and (0.450462, 0.859081) re-
spectively. The p-values show that only Ogun state’s series values were stationary,
whereas Anambra and Taraba states values were non-stationary and required a differ-
encing to make the series stationary. The hectare series were normalized by logarithmic
transformation due to high level of skewness before applying ARIMA and were re-
verted afterwards.

Feature selection

Feature selection is a crucial step necessary for helping a machine learning algorithm
to learn the intrinsic features of a dataset, prevent the model from overfitting to noisy
features in the training data, and to generalize well with unseen test data. We initially
selected some environmental variables that are easily accessible to the smallholder
farmer based on the literature [26-28]. Then, we further statistically quantified the re-
lationship that each of the selected variables have with crop yield by applying the KC
[29] technique. The KC is a non-parametric correlation technique which measures the
strength of association between two variables. It is useful to this study’s task of feature
selection where the interest is to quantify the associative relationship between crop
yield and each of the weather variables, soil variables, and hectare. KC is used because
the dataset is highly skewed due to outliers from crop yield and hectare.

Designing a Predictive Model using Machine Learning Techniques for Tabular Data
We employed machine learning algorithms well known within the machine learning
community. They are the XGBoost, RF, and DNN. The predictive power of XGBoost,
RF, and DNN were explored for crop yield prediction, though within a framework for
forecasting crop yield at various timesteps. However, our objective is not to forecast
crop yield for a given time frame but to predict the outcome of a farm produce given
some known environmental data. Therefore, given that a ML algorithm’s performance
is subject to the data to be learned, the RF and XGBoost ML algorithms were tuned and
the architecture of the DNN designed in a way that scaled to the regression problem.
Of the 1380 sample points of the dataset, 1281 are used for training the models, with
275 and 274 for validating and testing the models, respectively.

Extreme Gradient Boosting Regressor

XGBoost [30] is a supervised learning algorithm that has been widely applied to solving
regression problems. It is an extension of the gradient boosting decision tree (GBDT)
algorithm [31] which learns a task by building multiple decision tree models organized
in sequences, with the goal of minimizing the prediction errors of new models in the
sequence based on the errors of previous models. Hence, a strong model of decision
trees is formed. The XGBoost uses advanced regularization, L1 norm and L2 norm, to
speed up the GBDT model generalization process.

The hyperparameters of the XGBoost regressor in this study were selected based on the
grid search hyperparameter tuning method. The number of estimators is set at 1000,
which is the number of trees the XGBoost algorithm built from the training set. Maxi-
mum depth was assigned a value of 10; this controls how specialized each tree is to the
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training dataset. The higher the value the more likely the XGBoost algorithm overfits
to the training set. Learning rate had a value of 0.1, while the minimum samples split
was assigned a value of 2. This is a parameter that specifies the minimum number of
samples required at a leaf node to enable splitting to occur. Learning rate, which con-
trols the speed at which new trees can make corrections to the error of previous trees,
was assigned to a value of 0.1. Subsample was given a value of 1. This parameter sig-
nifies the number of training set samples XGBoost uses to grow the trees.

Random Forest Regressor

Random forest regressor (RFR) is a supervised learning algorithm that relies on a ran-
dom ensemble of several decision trees [32] to make a regression decision. Each tree is
built based on bagging and feature randomness to ensure that it is focused on unique
aspects of the data while maintaining low variance without increasing the bias of the
decision tree. RF can handle thousands of variables of different types.

In this study, using the grid search method for hyperparameter tuning, the following
parameters were selected as the best performing hyperparameters: Number of estima-
tors is set to 100: The number of trees the RF builds. Maximum depth assigned a value
of 10: Controls how specialized each tree is to the training dataset. The more the value
the more likely the RF algorithm overfits to the training set. Minimum samples split
assigned a value of 2: is a parameter that specifies the minimum number of samples
required at a leaf node to enable splitting to occur. Minimum samples leaf with a value
of 1: this is the minimum acceptable number of samples required to form a leaf node.

Multilayered Perceptron Regressor

The multilayered perceptron (MLP) is a class of networks that belong to the family of
artificial neural networks [33]. Given that most real-world structured data problems do
not follow a known distribution, MLPs have been well suited to solving them since they
approximate functions that are separable non-linearly. Typically, an MLP consists of
three layers — the input, hidden and output layers. For any neuron, except neurons at the
input, each layer passes data to the next layer. The output of a node must be above a
specified threshold value defined by an activation function. We formulate the neuron
activation function as:

)= | ) wixi +b

where X is the input, w; is a weight associated to a neuron, b is the bias associated with
a neuron, and ¢ is the activation function. During learning, the network updates its
weight, w; and bias, b using the backpropagation method to minimize the difference
between a target output of a problem and the network’s predicted output.
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There is no one-fit-all MLP architecture because different problems demand different
architectural settings or network hyperparameter tuning. Therefore, we designed a 4-
layer fully connected MLP architecture which comprises an input layer with neurons
the length of columns in the tabular data, two hidden layers of 16 neurons each, and an
output layer that predicts a numeric value that represents crop yield. The training set
was scaled into a distribution centered around zero-mean and one-standard deviation
and is used to transform every input into the network. We used the Glorot uniform (GU)
[36] weight initializer to define weights applied to the input and hidden layer’s neurons
along with zero bias. A rectified linear unit (ReLU) activation function [37] is used for
deciding whether to pass an input/hidden layer’s neuron or not to pass it. The ReLU is
commonly used because it can overcome the vanishing gradient problem. The hyperpa-
rameters of the proposed MLP architecture are described: The learning rate is set to
0.001 using the Adam optimizer which controls how the network updates weights with
respect to the loss gradient. Epoch is set to 100 to enable the network to make 100
passes through the entire training set during which the neuron weight is updated 41
times based on 32 samples in batch size per update.

3.4  Evaluation

The predictive models are evaluated with 274 data sets of the test set, using the mean
absolute error (MAE), mean absolute percentage error (MAPE) and the mean squared
error (MSE), which are described as follows.

Mean Absolute Error (MAE): is a statistical metric for evaluating the average magni-
tude of the errors between observations. This metric is commonly used for evaluating
a regression model’s prediction performance and it is useful for our regression problem
because it is known to be robust to outliers; particularly of types that are common in
crop yield data while being necessary for yield prediction. Mean Squared Error (MSE):
is another commonly used statistical metric for evaluating regression models. The pre-
diction error is again the difference between the true value and the predicted value, but
it differs from other metrics in that the mean differences between observations are
squared. Mean absolute percentage error (MAPE): The MAPE is also known as the
mean absolute percentage deviation error. It is a measure of accuracy of a regression
model that is commonly employed in machine learning because it offers a convenient
and straightforward interpretation of the degree of error between instances of the test
set.
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4 Results and Discussions

The loss in the performance of the MLPR model fitting of the training data and a fit to
new data (via validation set) as it updates weights through a backpropagation algorithm
is shown in Fig. 1. Here it can be observed that the MLPR model is able to generalize
well on the validation weather and soil data. Thus, it is expected that the model will
perform well on test data sets that were unseen during training.
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Fig. 1. Trend graph for training and validation loss of the MLPR, for modelling of crop yields
in Nigerian farms.

Fig. 1 shows that the smaller the prediction errors, the closer the predicted sample points
are to the line of best fit. This means that the RFR, XGBoostR and MLPR models can
be employed for crop yield prediction given weather and soil environmental variables,
though the RFR model performed best. The MSE indicates that the RFR and MLPR
with values 0.0075 t/ha and 0.1416 t/ha, respectively, were both better than the
XGBoostR model in minimizing the prediction errors (both across a dataset and the
difference in error between a predicted crop yield value and its ground truth value).
Even though XGBoostr achieved a low prediction error of 0.3031 t/ha, it is higher than
the error of RF and MLP models, possibly because the model’s variance is higher.
However, when using the MAE to reflect the average bias of a prediction model as a
measure of performance, the XGBoostR prediction error is observed to be lower. In
general, it can be stated that the MAE of RFR and MLPR models show higher bias over
the variance, while the XGBoostR model shows higher variance over bias. Further in-
terpretation of the MAE of the models on the test set samples with a total of 275 envi-



216

ronmental data points, reveal that about 2%, 14%, and 71% of the data samples com-
prise the deviation (no matter how small) between the predicted value and the ground
truth values for the RFR, XGBoostR and MLPR models, respectively.
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Fig. 2. Comparison of several evaluation metrics among all the proposed predictive models
for crop yield prediction for Nigerian farms.

A more intuitive way to observe the models’ performance, is through MAPE which
quantifies the percentage of the prediction error. The RFR, XGBoostR, and MLPR
models gave average prediction errors of +/-0.024%, +/-0.095%, and +/-0.2743%, re-
spectively. Overall, the RFR model maintained significantly lower errors between the
predicted crop yield (tonnes per hectare) values and ground truth values, than the
XGBoostR and MLPR models. The performance of the models observed in this study
is likely to be associated with the gradual changes, between values of grided data points,
of weather and soil variables for across the 23 states of Nigeria.

Further analysis included a unit testing of two sample points from the unseen test set to
investigate deeper into the performance of the model. From the test set a sample point
of environmental values were retrieved for a farm in Abia state, Nigeria: 26.24211,
193.5, 1.6860886, 5.25, 28.166666, 63.166668, 10.333333, 41.39817, which comprise:
temperature, precipitation, windspeed, soil pH, clay, sand, silt, and hectare, respec-
tively. The models predicted 58.32268137 t/ha, 58.324867 t/ha, and 58.94982 t/ha,
which is a difference of -0.00000137 t/ha, -0.002187 t/ha, -0.62714 t/ha for the RFR,
XGBoostR, and MLPR models, respectively. Using environmental variable data points
assumed for a farm in Osun state, Nigeria: 26, 18, 2, 3.4, 25.83, 66, 13, 0.5778 repre-
senting temperature, precipitation, windspeed, soil pH, clay, sand, silt, and hectare; the
RFR, XGBoostR, and MLPR models predicted 12.48870942 t/ha, 9.6671715 t/ha, and
61.549477 t/ha, respectively. This result show that the error of the MLPR can be unex-
pectedly very high which might limit its applicability in real-world use.
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4.1  Mobile Application of Predictive Modelling for Smart Farming

In Africa, there is currently minimal employment of drones, GPS systems, robots and
other advanced technologies, in agriculture. However, there is a growing wide coverage
of mobile phone usage which has been identified as a technological tool for enhancing
the experience of farmers in terms of education, and access to the market, as identified
in [38]. In this paper, we propose to utilize mobile phones as a practical tool for im-
proving the farming experience on the ground in Africa. We designed and developed a
mobile application, termed “IntelliFarm”, which includes key functionalities: 1) a
farmer-market communication interface to enable the farmer to directly access buyers
in a timely way before farm produce decomposes, and 2) an education interface to house
information on best farming practices that can be useful to a smallholder farmer, and 3)
the predictive model interface for determining, ahead of a planting season, the produce
to be expected from a given farm land. This was presented to the farmers in terminolo-
gies the smallholder farmer will understand best at a rural area, which is “number of
bags of corn” per hectare. How the farmer and buyer interact in the developed mobile
application can be visualized in Fig. 3. The IntelliFarm application will serve as a sup-
porting tool for aiding farmers’ decisions. Considering that the soil variables contribute
substantially towards the model’s prediction, if a farmer’s prediction is lower than ex-
pectation, he/she can search through the education module for possible ways to balance
the soil pH by adding fertilizers, or by investigating the nature of the soil, as ways of
improving on crop yield.
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Fig. 3. The IntelliFarm mobile application architecture. Each stage represents: the application
layer, business layer, service layer and the last is the database layer.
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Fig 4 shows IntelliFarm’s user graphical interfaces for: farmer registration and login,
welcome and core modules of the application, the prediction module, and education
and market access.
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Fig. 4. The graphical user interfaces of IntelliFarm core functionalities. (a) farmer registration
and login interface, (b) interfaces for welcome, and core modules of the application, (c) the
prediction module interface, and (d) the education and market access interfaces of the applica-
tion.

As shown in Fig. 3, the mobile application is comprised of a number of layers. At the
application layer, there are two main users of the system, the farmer and the buyer, who
can sign up and login to access the application and perform core processes. The busi-
ness layer is the backend of the application, and it is concerned with ensuring that the
user accounts, notifications, and application usage reports, are generated and stored. At
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the service layer, Morph’s backend is currently hosted under a free license on the Her-
oku cloud, where the predictive model is stored. The model takes temperature, precip-
itation, windspeed, soil pH, soil clay percentage, soil sand percentage, soil silt percent-
age, and size of farming area in hectare as input to be provided by the farmer from real-
time measurement on the farm. The weather data (temperature, precipitation and wind-
speed) can be provided through a third-party weather application programmer interface
(API), though it was not considered in this paper. The soil data can be measured by the
farmer using techniques which can be easily configured by a smallholder farmer using
local materials. An example of a local material and the process of achieving the meas-
urement is currently provided in the education tool. Once the farmer can retrieve the
required values, the farmer can proceed to click the prediction button, which will push
a prediction request to the third-party machine learning model API to process and return
crop yield predictions back to the mobile application in a format useful to the farmer.
Finally, the database layer is a database management system, mySQL, which enables
the user to access and store information currently stored in the cloud hosted by Google
Services. The application user manual is provided in the application to help smallholder
farmers navigate the application with ease.

5 Conclusion

In this study we designed models for predicting crop yield in a way useful to the small-
holder farmer during the planting season. RFR and XGBoostR models were designed
using grid search hyperparameter optimization, to generate hyperparameters and their
values, to enable the model to fit the data more accurately. A multi-layered perceptron
regressor (MLPR) was designed by experimenting with various depths of hidden layers
and hyperparameters. In model evaluation using test data unseen during training, the
RFR, XGBoostR and MLPR models achieved MSE values of 0.0075 t/ha, 0.1416,
0.3031 t/ha, respectively. Based on this performance, the RFR model was integrated
into the developed mobile application, along with functionalities for farmer education
and market access, thereby enabling a smallholder farmer to farm smart. It is expected
that widespread adoption of this technology in Nigeria, and across Africa more gener-
ally, could assist with attaining significant increases in crop production, which would
greatly benefit the region both in terms of food security and economically. In the future
work, the predictive model will be extended to handle predictions for other staple food
such as cassava, yam, and rice. It will also be worth including a third-party API to
generate weather data automatically for the farmer. Subsequent studies will include us-
ability analysis of the application after initial roll-out to quantify “the smallholder farm-
ers perceived ease of use” of the application.
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Abstract. Local model-agnostic explanations are the key technology to explain
individual predictions of black box machine learning models, and its great ad-
vantages over directly interpretable model is the good flexibility. In recent
years, although feature-based local model-agnostic explanations are widely
used, it also has two problems: do not account for interactions between features
and instability caused by locally randomly generated disturbance data. Focus on
these issues, we propose a local explanation method, which generates rules to
handle the non-linear dependences and interactions between features, utilizes
these rules to select neighborhood data points to improve the stability compared
with random perturbation, and then integrates the result of multiple local mod-
els to explain the black box prediction with the rules and rules’ contributions.
Experimental results show that our explanation outperforms the existing meth-
ods from different perspectives in terms of interpretability and fidelity.

Keywords: Explainable AL Interpretable Model, Black-box Model.

1 Introduction

With the widespread of machine learning in many fields, there has been great interest
in understanding why machine learning models make decisions. This issue is im-
portant for critical systems and decisive moments. Since, the deployed machine learn-
ing models should ensure transparency, accountability, and auditability, as the results
may be catastrophic, such as in Criminal Justice [1], Medical [2], and Financial [3].
Consequently, methods of explanation have been developed, which attracted the at-
tention from both government [4] and companies [5].

Since different users with different needs may require different explanations, there
is no single approach to give an effective explanation for AI. Among these explana-
tion methods, global and local explanations are two widely used perspectives. Global
explanations attempt to know the overall behavior of the black box model, usually by
employing a series of rules for explanations, such as decision rule sets [6] and rule
ensembles (linear [7] and generalized linear models [8] using rule-based features).
However, it is difficult to utilize an interpretable model to approximate a more com-
plex black box model accurately. Differing therefrom, local explanation is interested
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in explaining the prediction in terms of a single input and focuses on capturing the
behavior of the black box model on a local region of the input space. SHAP (Shapley
Additive exPlanations) assigns each feature an importance value for a particular pre-
diction [9]. LIME (Local Interpretable Model-agnostic Explanations) utilizes a linear
weighted combination of the input features to provide the explanation [10]. One issue
is that these methods consider features separately, which cannot reflect the interaction
between different features. When features interact with each other, this cannot be
expressed as the sum of the feature effects, because the effect of one feature depends
on the value of the other.

In addition to the above issue, there is another thing that affects explanation, which
is how to select appropriate neighborhood data points to train the local interpretable
model. Since this is directly influencing the fidelity and reliability of the explanation.
Random perturbation around one instance to be explained, such as in LIME [10], may
generate different explanations after each run for the same instance, which makes the
explanations confusing and unreliable.

In the present paper, we focus on solving the two issues mentioned above by intro-
ducing a multiple rule-based local surrogate model. Surrogate models are model-
agnostic interpretable models used to explain individual predictions of black box ma-
chine learning models. Aiming to improve the interpretability, the rules and rules’
contributions are induced as the concise expression of the explanation. Rules could
handle the non-linear dependences and interactions between features. To a certain
extent, experts could be induced to confirm whether the exploiting rules from the data
set comply with common sense and domain knowledge or not. Further, the extracted
rules have been utilized to select neighborhood data points to improve the stability
compared with random perturbation, and then the results of multiple local models
have been integrated to explain the black box prediction.

The main contributions are as follows:

1. Global rule extraction: we induce global rules as the explanation elements to show
the explanation result. Compared with independent features, rules containing a
small number of statements of features, which capture non-linear dependences and
interactions between features, are extracted. Meanwhile, as global rule extraction
takes the distribution of the entire training data into account, the potentially im-
portant association among the features could be found. Furthermore, global infor-
mation has been brought into local interpretable methods in some extent.

2. Multiple local rule-based models: we propose multiple linear models to generate
the rule-based explanation for a single instance. Here, the global rules are intro-
duced to select neighborhood data points, which ensures that these data points have
the same characteristics in some respects, and then the multiple local interpretable
models have been integrated to approximate to the prediction result.

3. Rules and rules’ contributions as the explanations: learning from the simplicity of
feature-based explanation with the form of feature and feature’s weight, we show
the explanation with rules and rule’s weights. Furthermore, the rule’s weight is
changing for different instance to show their contribution, which is quite different
from the global rule-based interpretable model.
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The rest of the paper is structured as follows: in Section 2, related work on rule ex-
traction and local interpretable methods are reviewed. In Section 3 we propose the
multiple rule-based local surrogate model. In Section 4 the experimental results and
evaluations on four different open datasets are demonstrated to assess the effects and
the outputs are compared with those existing methods. Section 5 concludes the paper
and presents the proposed future work.

2 Related Work

There have recently been an increasing number of studies on explanatory methods
aiming to make the results of Al systems more intelligible to humans, such as reason-
ing through prototypes to provide useful insight into the inner workings of the net-
work [9], or using saliency maps to highlight features in an input deemed relevant for
the prediction of a learned model [11], exploiting generic problem structures in expla-
nations for Automated Planning [12], or generating interpretable weights based on the
significance of the components to further improve recognition accuracy and interpret-
ability [13]. For the proposed multiple rule-based local surrogate model, the most
closely related research involves rule-based models and local interpretable models.

Rule-based models employ a series of rules for explanation by constructing associ-
ation rules with the target variables. Interpretable decision set is proposed as a joint
framework for description and prediction, since the decision sets are simple, concise,
and easily interpretable compared with decision trees [6]. Falling rule lists are classi-
fication models consisting of an ordered list of IF-THEN rules, provide an ability to
reason about each prediction [14]. Though, the rules in the beginning of the chain of
the rule list are interpretable. The additional rules become more and more difficult to
understand, since it needs to understand all the rules before them, which limits the
interpretability of decision lists. The most relevant RuleFit algorithm proposed by
Friedman and Popescu learns a sparse linear model with the original features and
several new features relating to decision rules [7]. This has filled the gap whereby the
linear regression model does not account for interaction between features. Another
interpretable model is the Skope-rules [15], which mainly differs in the way of choos-
ing decision rules: semantic deduplication based on variables composing each rule as
opposed to Ll-based feature selection (Rulefit). Differing from the approaches
(Rulefit and Skope-rules), the weights of each rule which are stable in the global ex-
planation, are changeable according to different input instances in the proposed mod-
el. This is also the key point of local based explanation.

For local interpretable models, the most well-known model at present is LIME
proposed by Ribeiro [10]. LIME explains the predictions for a classifier by learning
an interpretable model locally around the prediction (Fig. 1). First, data points are
generated by random perturbation around the input instance, then an interpretable
linear model is learned based on this local neighborhood space. It is an open question
as to what neighborhood is best to use by way of explanation. Anchor is a model-
agnostic explanation method, which adopts a perturbation-based strategy to generate
local explanations based on the easy-to-understand IF-THEN rule [16]. Similarly,
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LORE (Local Rule-based Explanations) trains a decision tree on a set of generated
artificial data points by a genetic algorithm [17]. However, there is one of the im-
portant issues of stability because of data generation, which results in getting different
explanations at every run for the same instance. Focusing on this issue, Pastor and
Baralis propose LACE (Local Agnostic attribute Contribution Explanation) to use K
neighbors to train a local interpretable model [18]. Hall proposes K-means clustering
to partition the training data set and the use thereof for training local models [5]. Zafar
uses one of the clusters grouped in the training data which is nearest to the input in-
stance as the neighborhood [19]. Differing therefrom, we propose to utilize rules to
find the neighborhood. Since data points in the same rule reflect a certain degree of
similarity in some aspect, which may also provide an explanation from a different
perspective. Furthermore, we integrate multiple local generalized additive models to
improve the approximation to the complex boundary. Instead of considering feature
independently, we ascertain the interactions between different features in the form of
rules.

LIME

Instance x ‘ '{ Black box model f }—" Prediction f(x) ‘
T T
; 1

Random y i
perturbation . UVE .| Feature-based
Explanations

Fig. 1. The framework of LIME

3 METHODOLOGY

We consider a “black box” classifier f of predicting output target Y € Y(e.g., labels)
using training data D with K features, where the data pointd = (dy, ..., dg). We then
denote a single instance x = (x4, ..., Xx ) to get a probability f (x) through classifier f.
Here, x is used to distinguish it from d.

This section details the proposed local surrogate interpretable model via multiple
rules. We first extract global rules from training data, then for one instance to be ex-
plained, we select similar data points according to the rules of this instance matching
in the entire training data. Then we propose multiple rule-based models to approxi-
mate to those black box in the local scopes with selected data points and integrate
them to provide the final explanation through rules and rules’ contribution. In brief,
our method attempts to assign rules an important value as the explanation for a partic-
ular prediction. This process is shown in Fig. 2.

There are two challenges: one is global rule mining on training data D, and the oth-
er is generating multiple rule-based models to deduce a way in which to make black
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box decisions for a single instance. As mentioned, our approach provides the rule and
rule contribution-based explanations as the final explanations.

Rule-based local surrogate interpretable method

| Instance x } -{ Black box model f } | Prediction f(x) ‘
Match | ‘
A4 v l
Global rule Ry Multiple Local N Rule-based
extraction on D Rule-based Models g Explanations(R, W)

Fig. 2. The featured-based local surrogate method may ignore the interactions between features.
The rule-based local surrogate interpretable method introduces global rule extraction and co-
vers multiple local models to achieve rule-based explanations of predictions.

3.1 Global Rule Extraction

Learning rules from entire Dataset

A rule-based algorithm is one way of constructing interpretable models, which uses
intrinsic interpretable algorithms such as decision tree algorithms ID3 [20], C4.5 [21]
and CART [22]. The decision tree can be linearized into decision rules, where the
outcome is the contents of the leaf node, and the conditions along the path form a
conjunction in the IF-THEN clause. In general, the rules take the form below:

IF condition 1 and condition 2 . . . and condition M,

THEN outcome.

That is, we generate a list of rules R = {ry,1,..,7y}, where 1, is composed of
multiple conditions. We can also define s as the prevailing conditions, then r;, =
Sp1 A\ Spz2 A...A Syuy. Here, M is decided by the depth of each tree. If it is assumed r =
s; As,, where s; is x; > 28 and s, is xg = “Married”, then this rule » is x; >
28 and x5 = “Married”.

Decision trees almost always pick the root node at random and are constructed
from the top-down by analyzing the interactions between features. When some fea-
tures have strong correlation but are sparse in terms of the data pertaining thereto,
rules may not be well extracted by use of a decision tree. As mentioned by Vapnik
[23], as long as a data set for constructing the associated tree is expressive, accurate
decision rules can be explored even in a smaller model space. Hence, before building
the tree, we can reduce the amount of irrelevant data in advance, thus ensuring the
strong correlation between the features in these data. By using the method, the cluster-
ing technique is used to divide the whole data set D into different subsets, which have
higher similarity within one cluster and lower similarity between different clusters.
Next, multiple decision trees are constructed in each cluster to generate rules, these
rules are merged into a global rule list R.
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Quality measure for rules

Although the rule list R is obtained, there may be less data in each cluster and the
quality of the rules is not guaranteed due to the uncertainty of the number of clusters,
therefore, we still need to find a way of selecting high-quality rules. In this case, we
not only consider how many data satisfy the rule, but also the ratio between different
classes. To filter the low quality of rules, we focus on the data distribution between
classes and within classes and define a new metric.

We define the data points in D which satisfy rule r as coverp (). The set of class
labels in D is € € {1,..,L}, where L is the amount of class labels. D, is the data set in
which all the data points belong to the class label €. Then, the coverage ratio in class
label 2 is defined as follows:

|coverD{, (r)l

|coverD{, (r)c|

0, = 6]

Thereinto, C is the complement set of coverp, () in D, and |-| is the number of set
element. To compare the situation of rule coverage between and within classes, the
following metrics is defined:

max_ratio(r) = m{gix(:—e) 2)
—f

Thereinto, —¢ represents the data set whose target labels are not £. When the value
of max_ratio is larger, the quality of the rule is better. We filter the rules in R based
on the threshold of max_ratio and obtain the new rule list R.

3.2 Multiple local rule-based model

Our goal is to ascertain the prediction result of a single instance through rules and
rule’s contributions. The rules for each instance can be easily ascertained by matching
the rule list R. So here we focus on the problem of learning the rule contributions for
an instance x. First, define a rule list R, where x is matched with R. That is,

Ry = Urexlrilx € cover(r)} €)

Thereinto i € {1,2,...,I} and [ = |R,|, so letr; = s;; A ... A 5. In general, feature
X belongs to a certain interval in each rule. Therefore, condition s;,, can be defined
as:

Sim = (Xgn, range;y) 4)

Thereinto x;,,, is a feature appearing in the condition s;,,,, which generally belongs
to a contiguous interval represented by range;,, and defined by lower and upper lim-
it. Let z;(x) € {0,1} denote whether the instance x satisfies the rule r;, as expressed

by:

zi(x) = H%:l ﬂrangeimxim (5)
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The indicator function 1 is 1 whenever x;,, € range;,, and 0 otherwise.

Since most of the classification spaces are non-linear, most of the local interpreta-
ble methods explain the classifier by learning a linear model locally around the test
instance. As mentioned, the stability of LIME is poor due to the random perturbation.
To ensure the stability of our explainable model, the core idea is to explain outcomes
objectively through integrating multiple local interpretable models. Meanwhile, com-
pared with the perturbation-based data generation, data under a rule tends to be more
local. Formally, the data that satisfies one rule are taken as local data, which can be
written as coverp (1;). Next, we fit g; on cover (r;) by using a generalized additive
model. The original features d;, and their features z;(d) are combined as new features
to fit a linear model:

gi(d) = @ + Xk_y awdy + ), Bizi(d) (6)

Through this linear model, original features and rules become a new feature and
are assigned a weight under a local rule. Thereinto a;, is the weight applied to the
original features and f; is the weights of rules. Thereinto ] =1 = |R,|. Ifj =1,
let B; = 0, because under rule 73, z;(d)=1 throughout the data set coverp (r;). Due to
multicollinearity between features and rules, the proposed method uses L1 regulariza-
tion. That is, we train the linear model with the ridge regression model, and the loss
function is:

Li(f,80) = Saccoverpr(f(D) — g:(@)" + A(Tkey ai? + T/, B2) (7)

Therein A is the regularization parameter. Finally, all the g; models and their rule
weights f;; are integrated as the final contribution to each rule:

Norm(Bij)

W) = U2 ®)

I-1

4 Experiments

In this section, we conducted objective experiments from different perspectives to
evaluate the proposed method MuRLoS (Multiple Rule-based Local Surrogate model)
on four open data sets and compare with the existing explicable method. First, we
introduce the details about the datasets and the experiments setting. Then, we evaluate
the rule-based explanations with two different evaluation methods focusing on the
local fidelity to the black box model prediction and the extent of keeping the infor-
mation from the original data. In the end, we evaluate the interpretability by simulat-
ing user understanding on the explanation.
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4.1 Experiments setting and Details

We analyzed four datasets from different domains, namely Adult ' , Bank 2, Diabe-
tes 3 and Churn*. These domains rely heavily on human decision making, and hence
would benefit from the explanation of the predictive models.

*  The task of Adult data set is to determine whether a person is paid more than

50,000 per annum.

*  The classification goal of Bank data set is to predict if the client will sub-

scribe a term deposit.

*  Diabetes is an early-stage diabetes risk-prediction dataset.

*  Churn aims to predict behavior to retain customers.

As a black box, here we train a neural network with two layers and 50 neurons.
The aim of our experiment is not to pursue the high accuracy of the classifier, but to
evaluate the interpretability of the proposed method, therefore, we can divide more
test samples for explanation, with 7:3 partition ratio for training set and test set. Then
we use the proposed method to provide rule-based explanations for each instance.

Setting max_ratio for global rule selection

In Section 3.1, we generate the CART trees in each cluster and merge their rules
into rule list R. Here, we use the k-means as the clustering method. And the rule list is
selected by using our designed metric max_ratio.

To set the value of max_ratio to filter rules and evaluate the effectiveness of the
quality measures for these selected rules, we calculate the error rate in different values
of max_ratio. Because the outcomes through CART trees have the label € for each
rule, we define the R € R as the rule list with label . For an instance x from train-
ing data, we define the rule list R where x is matched with the rule list R} . Here,
we only consider the ratio of Rf in R? as the main factor for the prediction. Hence,
the prediction for one instance x can be defined as follows:

<]
Pred(x) = argmax(5=5) 9)
=

We adopt error rate as the metric to evaluate the rule selection. The smaller of the
error rate, the performance is better. Error rate is defined according to the definition in
Rulefit:

error_rate = E, [l # sign(Pred(x))] (10)

The Fig. 3 shows the distributions of error_rate in different max ratio on four data
sets.

1 http://archive.ics.uci.edu/ml/datasets/Adult

2 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

3 https://archive.ics.uci.edu/ml/datasets/Early-+stage+diabetes+risk+prediction+dataset.
4 https://www kaggle.com/blastchar/telco-customer-churn
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Fig. 3. The distribution of error_rate in different max_ratio on four data sets. Here the
max_ratio is setting from 0.0 to 10.0, and the step is 0.5.

The max_ratio is useful to select rules. The larger value of the max_ratio, the more
rules will be filtered. The scale of the rule list is decreased.

The error_rate is changed by different value of max_ratio. Based on the smallest
error_rate, we could select one suitable value for different data set. We aim to select
suitable scale of rules with high quality to explain the black box model prediction.

Details of Experiments

We list the descriptions of evaluated data, and the accuracy of the black box model
in Table 1. In our experiments, we filtered the rules by the chosen value of max_ratio
to get the final rule list R . Here #Rules represents the total number of rules extracted
from the training data. All explanations present in the paper were generated in a few
seconds within a minute.

Table 1. Descriptions of data sets (Adult, Bank, Diabetes and Churn)

#Recorders (Positive: #Features Accuracy #Rules
Negative) on NN
Adult 23,097:7,833 438 0.827 17
Bank 30,700:3,898 56 0.878 27
Diabetes 296:200 17 0.987 12
Churn 5,174:1,869 21 0.786 18

We give an example of our explanation result in Fig. 4 (Adult dataset), compared
with by LIME and Anchor. The explanation result includes related rules and rule
contributions for one input instance. These rules are self-contained and apply individ-
ually, which means that no complicated reasoning about multiple rules is needed. It
makes them much more understandable to users.
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MuRLoS = <=50K mm >50K
051
LIME Anchor
negative
0.00 < Married <=... Anchor :

0.49

{ Service > 0.00 AND Education-Num <= 9.00
ANDCapital Loss <= 0.00 AND
White-Collar <= 0.00 AND Blue-Collar <= 0.00}
=> Prediction: <=50k , True label: 0

Education-Num <=...

0.34

Capital Gain > 0.00
033

Hours per week <...
0.16

Fig. 4. Example of explaining a prediction on the Adult data set.

For this example, the instance is predicted to the class who is paid less than 50,000
per annum by the black box model (The NN prediction is 0.43), we can see what
cause him belongs to this class from the explanation. The yellow bars in the figure
show positive contributions, and the blue and green bars show negative contributions
of the explanation results.

Compared with LIME and Anchor, we have some similarity and difference. In de-
tails, features Service and CaptialLoss contained in the explanation of Anchor and our
method, and do not appear in the explanation of LIME. Features Married and Capti-
alGain contained in the explanation of LIME and our method, and do not appear in
the explanation of Anchor. The feature “Married” has been reported as an important
factor in this data set, we get the same conclusion. Overall, our explanation contains
more information, and the expression is more concise.

Similar with us in form, LIME gives the explanation with features and their
weights. However, Anchor and LORE are rule-based explanation, they give the ex-
planation with one decision rule and the prediction of classes. We could not know
how much contribution of these features and their combination. Therefore, we choose
LIME in comparison in the following experiments. In the future work, we will ana-
lyze Anchor, LORE and LACE well, hope to find a reasonable and fair way to com-
pare with them.

4.2  Local Fidelity

For the explanation, one of the essential issues is local fidelity. The local surrogate
interpretable model must be faithful to the black box model prediction. In this exper-
iment, we use the R? score as the metric to evaluate the local surrogate model, with
the prediction from the black box model as the ground truth. R? score is a relative
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measure scaled between 0 and 1. The best R* score is 1.0. The closer the score is to
1.0, the better the performance of fidelity is to local surrogate model. We compute the
mean R? scores with all the points in the test set for four data sets. This will indicate
how good the model has fit on the whole data set. Table 2 shows the comparisons
between our method and LIME for local fidelity. Our method gets higher R? score
than LIME. It shows our method outperforms LIME by providing a better local ap-
proximation.

To verify the effectiveness of integrating multiple local interpretable models, we
compare it with training one single model with the data that satisfies rules r; € R,.
Our method utilizes the fitting rules R, of instance x to select neighborhood data
points, and then integrated with the multiple local interpretable models to approxi-
mate the prediction result. Shown in the experimental results in Table 2, our method
is better than that of training one single model, which shows the effectiveness of our
method. Further, the user could see more detail explanation under each local inter-
pretable model with our method. It could be seen as giving explanation from different
perspectives with different neighborhood data points.

Table 2. R? score on Adult, Bank, Diabetes and Churn datasets.

MuRLoS (with single

Datasets MuRLoS linear model) LIME
Adult 0.944 0.859 0.684
Bank 0.947 0.834 0.710

Diabetes 0.969 0.864 0.747
Churn 0.965 0.824 0.726

4.3  The Quality of Rule-based Explanations

The rule list is selected by using our designed metric max_ratio from the perspec-
tive of data distribution, but there is also a need to measure the quality of each the
rule-based explanations. We want to measure the loss of feature information after the
explanation. It is necessary to know whether the weight of each rule can be fitted to
the same level as the original model. In other words, we wish the prediction for one
instance to get no worse if the original features are substituted by the rules, and their
contributions, to train a new classifier, however, we need to use the rule features of
test data to train the classifier, so we cannot compare the output with that from the
original black box model trained by use of the training set. Therefore, replicating the
original black box model-fitting parameters, we can retrain a new model on test data
as a baseline for comparison. In addition, to ensure the reliability of the test results, a
cross-validation method is used.

For all data sets, the test data sets are split by 80%:20% for training and testing.
Here the same neural network is used to train the classification model. According to
the number of data, we conduct cross-validation on each data set and report the mean
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average values of accuracy, recall, and F1. To ensure a fair comparison, the original
features and the features of LIME are also used to perform the above experiment. The
results for three methods applied to the four data sets are listed in Table 3.

The information content of proposing set of rules cannot be higher than that of
black box model, therefore all the performance are lower than that of the black box
model with original features shown in Table 1. The performance of our method is
closer to that of using the original features and outperforms that of LIME in terms of
three metrics. Although the dimension of our rule-based feature is lower than that of
the original features and LIME, the effect of feature representation is better. As a
result, a relatively small number of rules are generated by our method to simplify
interpretation without losing information about the original features.

For the Diabetes dataset, our method and LIME have similar good performance,
which is due to small scale and the presence of fewer features in this dataset. The task
may be solved with interpretable models.

Table 3. Comparison of Original model, MuRLoS and LIME for the quality of rule-based
explanations on Adult, Bank, Diabetes and Churn datasets.

Dataset Method Accuracy Recall F1
Original 0.807 0.842 0.815
Adult MuRLoS 0.806 0.865 0.807
LIME 0.752 0.643 0.72
Original 0.875 0.905 0.878
Bank MuRLoS 0.872 0.916 0.876
LIME 0.751 0.625 0.712
Original 0.90 0.90 0.901
Diabetes MuRLoS 0.95 1.0 0.956
LIME 0.95 0.95 0.949
Original 0.754 0.793 0.653
Churn MuRLoS 0.766 0.836 0.784
LIME 0.745 0.798 0.760

4.4  Simulating the Users

In this section, the interpretability is evaluated by simulating user understanding on
the explanation. Given an input and an explanation, we simulate what users can pre-
dict for this input instance.

Compared with LIME, we simulate common user behaviors by summing the con-
tribution score of rules (our method) or features (LIME) in the explanation results as
the prediction value. For the instance shown in Fig. 4., we predict this instance be-
longs to less than 50,000 per annum when adding all the contributions of rules, which



235

is consistent with the prediction result given by the black box model. It shows that the
users received the explanation of the outcome of the black box model correctly.

Accuracy is used as the metric to evaluate the performance on those test data de-
scribed above. This evaluation aims to show how accurately of the rule-based expla-
nation to humans. The results are listed in Table 4.

Table 4. Comparison results of simulating user’s understanding by accuracy metric.

Adult Bank Diabetes Churn
MuRLoS 0.750 0.845 0.950 0.709
LIME 0.747 0.743 0.975 0.682

In Table 4, both LIME and MuRLoS explanation methods captured important in-
formation and showed advantages when the data set is small such as on Diabetes da-
taset. For the Diabetes dataset, the accuracy of LIME is higher than that of our meth-
od, which is due to the smaller scale and presence of fewer features in this dataset. On
other three dataset, the results of MuRLoS are higher than those of LIME, especially
on the Bank dataset with nearly up to 10%. This shows that feature-based representa-
tion performs well in terms of simple relationship data, while rule-based representa-
tion is important when there are interactions between features.

5 Conclusion

In this paper, a novel approach is proposed to explain model predictions for tabulated
data. The global rule extraction presented uses global rules to select neighborhood
data points. Meanwhile, rules capture non-linear dependences and interactions be-
tween features. Global rules are introduced to select neighborhood data points, and
these are then integrated with multiple local interpretable models to approximate the
predicted results. Compared with random perturbation, this strengthens the stability of
the model to assist the generation of similar data points. Experimental results on four
open datasets show that our method achieves a better performance in rule-based ex-
planation by evaluating from different perspectives in terms of local fidelity, the ex-
tent of keeping the original information and simulating user understanding of the
explanation. In future work, we will improve the fusion of multiple local interpretable
models to improve the approximation of the black box model, extend our approach to
deal with real large scale of data and undertake exhaustive analysis with different
types of data.
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Abstract. Every year, fire causes thousands of deaths as well as bil-
lions of dollars of material damage. Prevention and early fire detection
have become a topic of interest for many scientists. While there are many
existing solutions such as smoke detectors, flame detectors, chemical sen-
sors, infrared thermal cameras and many other hybrid systems, computer
vision techniques that use raw RGB image as an input have emerged as
fast, reliable, precise, and economical enough to be widely used with a
satisfactory accuracy. For that purpose, Convolutional Neural Networks
(CNNs) were considered as they can take input image from an RGB
camera, learn its features and classify it as fire or non-fire. Another im-
portant thing to consider is their ability to be used on hardware with a
limited amount of computational power, e.g. embedded systems. In this
paper, four different versions of MobileNet, four versions of ResNet, and
four versions of EfficientNet were evaluated by comparing their ability
to detect fire while also taking into consideration their need for com-
putational power. The evaluation was performed on a custom dataset
that contains over 60,000 images. Overall, ResNet showed the lowest
performance which was somewhat expected as it is the oldest network.
MobileNets and EfficientNets showed similar performance proving them-
selves to be capable when used as a fire detection classifiers. Also, due
to their low number of parameters and low computational need, they are
suitable for use in systems with limited resources.

Keywords: convolutional neural network (CNN) - deep learning - fire
detection - image classification - performance evaluation

1 Introduction

One of the most disastrous accidents that can occur in shopping centers, ware-
houses, factories, office buildings, schools, or any other building is fire. According
to the Center of Fire Statistics [I5], in 2019 there were 812,140 reported fires in
residential and other buildings which is 31.6 % of all reported fires. In all these

* Corresponding author.
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fires 13,938 people died which is 90.6 % of all fire-related deaths. The information
was provided by 24 world countries that participate in the International Asso-
ciation of Fire and Rescue Service program. When we add billions of dollars in
damages, the consequences are colossal, so prevention and early detection of fire
is of the utmost significance.

There are many existing solutions for fire detection which include tempera-
ture detectors, smoke detectors, and even thermal cameras. Many of them have
limited capabilities, cannot be used in big spaces since they have to be in the
proximity of a fire source, they also can not provide the location of the source
of fire, along with the size and intensity of the fire, direction of propagation,
etc. Another very important factor is early fire detection, while the fire is still
in the early stage or even before there is a visible flame. With the rapid growth
of technology, especially in the field of digital imaging, many image and video
processing techniques have been developed as they can successfully replace old
types of detectors with a digital camera and some kind of computer vision soft-
ware that can recognize smoke and fire. One of the most widely used and most
promising techniques is using convolutional neural networks (CNNs) as they are
proven to be excellent in the area of object classification. Basic idea is to use
a raw RGB image as an input to the CNN without image preprocessing and
without feature extraction step. CNN should automatically learn image features
from input images and successfully classify them as fire or non-fire. Such fire
detection systems are often used as a part of some smaller device with limited
resources and often battery operated (e.g. surveillance cameras, forest fire de-
tectors, autonomous robots, etc.) that have limited computational power and
limited power supply, so the emphasis of this paper is not only on the raw per-
formance of considered CNNs but also on their possibility to be used as a part
of an embedded system.

In this paper, we compared the performance of three very popular CNNs and
several of their subtypes in the task of fire classification because of the promising
performance of CNNs on other publicly available datasets. Furthermore, CNN
based approach to fire detection is feasible because of the cheap and widely
available RGB cameras, where the main expense is in the researcher’s time and
computational power required to train a CNN. Traditional approaches required
the use of expensive, heavy, and often large equipment which is not suitable for
non-industrial applications while also requiring regular maintenance. Regard-
less, there are some limitations of the chosen approach in terms of the ability to
detect small fire, and fire at a large distance; but the advantages of chosen ap-
poroach overcomes the potential disadvantages. The main idea is to obtain CNN
classification results on our custom fire dataset while we take into consideration
their performance metrics. We compared models by evaluating confusion matrix
from which we determined accuracy, precision, recall and F1-score. We also used
some other important parameters such as model size, number of parameters,
processing power requirements, and inference latency as they are very impor-
tant when CNN in considered for embedded usage. Training was performed on
Ryzen 9 5900X and RTX 3080. The rest of the hardware is presented in Table
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CNNs that we have used in this paper are ResNets [17], EfficientNets [27], and
MobileNets [I8], 19} 25].

The organization of this paper is as follows. Section [2] presents short overview
of fire detection methods. In Section[3|our used dataset is presented as well as our
hardware configuration and structures of used CNN models. Section [4] describes
the performance of all tested models on our fire dataset. Finally, in Section
the conclusion and future work are given.

2 Overview of fire detection methods

As we mentioned in the introduction, there are many existing methods for fire
detection. Some of them include using sensors such as temperature, smoke, and
flame detectors which are becoming obsolete due to their limitations. Some of the
more advanced methods for fire detection are evaluated in [I6] by using chemical
sensors. This kind of approach relies on the fact that chemical volatiles appear
before the smoke particles. This kind of system can provide a faster response
than the conventional sensors.

Another approach to consider is by using infrared thermal (IRT) cameras in
combination with CNNs. The advantage of that kind of approach is its ability
for early detection and prevention of fire as it can detect anomalies that still
have not developed other symptoms (smoke or smell). For example, if an elec-
trical installation is overheating due to an overload or some faulty connection, it
could burst into flames after some time. By using thermal imagery, it is possible
to detect an increase in temperature and react accordingly. In [20], IRT im-
ages are used for fault detection in electrical facilities. Fast Region-based CNN
(Fast R-CNN), Faster R-CNN, and YOLOv3 were used as detection algorithms.
The detected objects were observed through a thermal intensity area analysis
(TTAA). The best accuracy was obtained by using Faster R-CNN.

During the last decade, a commonly used method for fire detection was the
usage of raw RGB image processing and computer vision techniques combined
with CNNs. Using IRT images and CNNs is an interesting approach to fault de-
tection which can be further adapted for early fire detection as a part of future
work. In [26], the authors used two pre-trained networks, VGG16 and ResNet-50
which they further enhanced by adding additional fully-connected layers. They
tested these models on their unbalanced dataset which includes fewer fire images
and thus replicating the real-world environment. Results showed improved ac-
curacy compared to the base models but also increased training time due to the
additional layers. The same approach was utilized in our paper but the stated
paper used obsolete CNN architectures. Therefore we decided to evaluate newer
CNN architectures in comparison to the initial ResNets. In [I3], the authors pro-
posed a novel fire detection method that consists of two steps. In the first step, a
Faster R-CNN network is used to detect and localize candidate fire regions. Val-
idation of detected fire regions was done in the second step by using analysis of
spatial characteristics through Linear Dynamical Systems. Finally, to distinguish
actual fire and fire-colored objects, they used VLAD encoding which further im-
proved the performance and reduced detection errors. Obtained results were
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compared with some of the most popular fire detection approaches (AlexNet,
VGG16, ResNet-101) and the proposed solution retained high true positive rate
while significantly reducing false positive rate since they used many fire-colored
images for training. In [22], authors proposed four novel fire detection methods
based on the CNN state-of-the-art object detection models, namely Faster R-
CNN, R-FCN, SSD, and YOLOv3. Faster R-CNN and R-CFN belong to the
two-stage object detection networks as they include region proposal network as
well as classification network. In the first step, CNN takes input images and out-
puts region proposals. In the second step, region-based object detection CNN
decides whether the fire is present or not in the proposed regions. The detec-
tion speed of two-stage networks is slower hence one-stage networks (SSD and
YOLOV3) were proposed. They predict the object class by a single forward CNN.
All proposed methods were evaluated on two different datasets and showed su-
perior performance to other non-CNN based approaches. The best performance
was achieved by using the YOLOv3 object detection model with 83.7 % accuracy
and processing capability of 28 fps.

Often there is a need for a precise, fast, and portable solution for fire detection
that can be implemented on hardware with limited computational resources,
and also be available at an affordable price. In [24] authors proposed a low-cost
fire detection CNN architecture based on GoogleNet since it is more suitable
for implementation on FPGA and other memory-constrained hardware while
retaining high classification accuracy. The proposed model consists of 100 layers
with two main convolution layers, four max-pooling layers, one average pooling
layer, and seven inception layers. In this work, they also used a transfer learning
approach. Experiments showed excellent results in comparison with more robust
models like AlexNet in terms of accuracy. In [23], authors resumed their previous
work on developing cost-effective models for fire detection. They proposed a new
energy-friendly and efficient CNN architecture based on SqueezeNet architecture.
The proposed architecture uses smaller convolutional kernels without a dense,
fully-connected layers, which helps in reducing computational requirements. The
model was tested on two separate datasets and showed slightly reduced accuracy
as well as reduced false positive rate. The biggest improvement was the fact
that they reduced the model size from 238 MB (AlexNet) to 3 MB. The two
aforementioned papers introduced novel low-cost CNN architectures suitable for
embedded usage which makes them as interesting milestones in designing low
storage, but high learning capacity networks.

3 Methodology

Our approach for model evaluation is to apply the same set of hyperparameters
to all models in order to ensure the same training conditions among the net-
works. The values of used hyperparameters are presented in Table [2] Since our
goal is to detect fire and to achieve the lowest possible false negative rate our
models are evalutated mainly on recall and F1-score metrics. The models chosen
for the analysis include MobileNets, ResNets, and EfficientNets. The reason for
choosing the stated networks lays in the fact that we wanted to evaluate the
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older style of CNN architecture crafting with modern state-of-the-art architec-
ture crafting. Although MobileNets and EfficientNets share the same constituent
elements, we wanted to demonstrate the EfficientNet learning capacity and scal-
ing improvements.

3.1 Dataset
For dataset image acquisition Web scraping scripts were used because of the lack
of official fire image datasets which would satisfy resolution, quantity, and vari-
ety requirements for the CNN training without inducing blur and irregularities
by using various upsampling methods. Manual filtering of scraped images was
required because of the grainy, low-resolution images, and images which contain
conflicting or unrecognizable features even for humans. The dataset contains
challenging images in terms of types of backgrounds, content, size of the tar-
get object, brightness/exposure, resolution, aspect ratio, computer-manipulated
graphics, etc. Scraped images were complemented by the BowFire Dataset [9],
Fire Dataset [3], Fire-Flame-Dataset 2], Fire Detection Dataset [4] and DFire
[8]. The final dataset used for training consists of 50972 non-fire images, 7359 fire
images; the validation dataset consists of 3000 non-fire images, 3000 fire images;
and the test dataset of 2000 and 2000 images of non-fire and fire respectively.
A balanced training dataset may give misleading information in real-world
applications because fire is a relatively rare occurrence. Hence, we do not need to
create a balanced training dataset [26]. Fire images consist of various types of fire
morphology, color, size, and position in the images. For networks to differentiate
between non-fire images similar to fire, and real fire, many images of dawns,
sunsets, neon signs, and crimson-colored objects are included. In the first row of
Fig. [[] examples of challenging images of non-fire can be seen, while the second
row of the aforementioned table contains examples of challenging fire images.

Fig. 1: Example of images used during the CNN training: [10], [I1] [5], [6]
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3.2 Hardware details

The main hardware used for training and testing consists of an x64 AMD proces-
sor and NVIDIA RTX 3080 graphic card. Fast graphic cards greatly contribute
to the reduction of training times, while fast CPUs contribute to faster image
queueing, loading, and preprocessing before supplying images to the model for
training. Further hardware details which affect the training of machine learning
the most are supplied in Table [T}

Table 1: Hardware details

Component type Component
Processor Ryzen 9 5900X
RAM HyperX 64GB 3200 MHz
Motherboard Gigabyte X570 Gaming X
Graphic card RTX 3080 10 GB GDDR6X
Storage Samsung 970 EVO Plus 1 TB

3.3 Evaluated convolutional neural networks

Tested CNNs on the custom fire dataset include four versions of MobileNets -
MobileNetV1 [19], MobileNetV2 [25], MobileNetV3 [I8] Small and Large vari-
ant; four versions of ResNets [I7] - ResNet-18, ResNet-24, ResNet-50, ResNet-
101; and four variations of EfficientNet [27] - EfficientNet-B0, EfficientNet-B1,
EfficientNet-B2, and EfficientNet-B3.

As researchers tried to improve neural network performance, they modified
network architectures by increasing the network depth. In theory, as we increase
the number of layers in a neural network, it should get better at recognizing
complex functions and features, which consequently results in better learning.
That proved not to be the case as the training accuracy began to drop after a
certain network depth. That was due to the problem of vanishing gradient. When
the gradient is back-propagated to the earlier layers, it can converge to zero due
to the repeated multiplication which results in performance degradation. So, to
solve the degradation problem and still be able to use deeper networks to solve
complex problems, researchers invented residual networks, one of which is ResNet
[I7]. The main idea was to create residual connections, i.e. identity shortcuts or
skip connections. They provide alternative connections to the regular ones as
shown in Fig.[2] In a training procedure, if the coefficient of a regular connection
converges to zero, the residual shortcut will skip regular connection and allow
the data calculated before the regular connection to be forwarded directly to the
rest of the network and thus assure the integrity of the network. That process
is also called identity mapping. So, if any layer hurts the performance of the
networks it will be skipped.

The difference between ResNet-18 and ResNet-34, as well as ResNet-50 and
ResNet-101, is just a number of used blocks that define the depth of the net-
work while the number in the name of the ResNet subtype represents the total
number of weighted layers. When considering ResNet architecture, every ResNet
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performs initial convolution using 7x7 kernel size and max-pooling using 3x3 ker-
nel size. Each following ResNet block is two layer deep basic block in ResNet-18
and Resnet-34, or three layer deep bottleneck block in ResNet-50 and ResNet-
101 as shown in Fig. 3] The convolutional layers in the basic block have 3x3
filters and the skip connection is added to each pair of 3x3 filters while bot-
tleneck blocks use 1x1, 3x3, and 1x1 convolutions, where 1x1 layers are used
for reducing and restoring dimensions. Similar to the basic block, a skip con-
nection is added for that three-layer block. When considering skip connections,
they can be directly used when input and output are of the same dimensions.
When the dimension increases, there are two possibilities. One is to use identity
mapping with extra zero entries padded to compensate for increased dimension
which adds no extra parameters. The second is to use a projection shortcut that
matches dimension by using 1x1 convolution. Finally, all ResNets use an average
pooling layer followed by a fully-connected layer.

The guiding principle for the MobileNet research team was to develop a new
type of CNN that could be used on low-powered electronics with constrained
computational power and energy consumption, such as mobile phones and other
embedded systems. MobileNets can be used for classification, object detection,
and segmentation tasks. The first iteration of the MobileNet, MobileNetV1 [19],
introduces a depth-wise convolution as a vital instrument of lowering computa-
tional complexity and consequently lowering system latency. Depth-wise convo-
lution does not require as much of the computational resources as traditional
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convolution because it is applied over each channel separately, and not through
all the channels at the same time. Moreover, the number of kernels convolving the
image is equal to the number of channels of the input features of a certain network
layer. With basic convolution, every applied kernel convolves the entire depth of
the input features and the total amount of the applied kernels is arbitrarily left
to the network architect to define. After applying the depth-wise convolution,
an application of 1x1 kernel must be performed on its output to combine and
prepare them for the following layer. MobileNet V2 [25] introduced inverted resid-
ual blocks which act as a network bottleneck, along with the skip connections
which allow easier gradient backpropagation. Inverted residual blocks allow the
network to transform low-level features into high-level features, i.e. more refined
parts of contours of an object, while remaining computationally efficient. Heavy
motivation for inverted residual blocks comes from the MobileNetV1 [I9] where
depth-wise convolution was being utilized. In MobileNetV2 depth-wise convolu-
tion is used to avoid using computationally expensive convolution over N input
channels into one convolution per N-th channel, applying activation function and
using 1x1 convolution to create output features. MobileNetV3 [I8] builds on the
success of its predecessor by allowing the AutoML to find the most adequate
network architecture and also incorporates the squeeze-and-excitation blocks in
the network architecture. Based on the [I8] the authors apply MnasNet and
NetAdapt algorithms from the AutoML. MnasNet is applied to find the rough
network architecture which has around 80ms of latency, and NetAdapt is ap-
plied afterward for additional performance enhancements. With their search al-
gorithms they defined two MobileNetV3 architectures: MobileNetV3-Large suit-
able for more capable computing hardware; and MobileNetV3-Small for low-
powered hardware. The aforementioned squeeze-and-excitation blocks improve
network performance by prioritizing salient channels from the features which are
sent into the block and performing feature recalibration. The structure of the
squeeze-and-excitation block is the average pool layer which will have the highest
value for the most salient channel, 1x1 convolution which will reduce the num-
ber of channels followed by SiLLU activation function, 1x1 convolution which will
output the original number of channels, and a sigmoid activation function. The
output will “mark” important channels where useful information can be learned
by the neural network in the deeper layers. The squeeze-and-excitation module
is placed inside the inverted residual block before the final 1x1 convolution which
convolves through all the channels.

The EfficientNet team’s goal [27] was to find the optimal network scaling
method which would deterministically improve network performance for a fixed
computational cost. In other words, they could make a tradeoff between network
performance and available computing resources. Previous methods of network
scaling included scaling either the input image resolution, network depth, or net-
work width. In the EfficientNet, every specified network parameter is scaled by
the same constant. The authors’ justification for the previous statement comes
from the intuition that an increase in the image resolution requires increased
depth to increase the network’s receptive field, and an increased number of
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Table 2: Training hyperparameters

Number of epochs 120
Training batch size 16
Validation batch size 32
Optimization algorithm ADAM [21]
Loss function CrossEntropy
Initial learning rate 0.001
Learning rate scheduler ReduceLROnPlateau
- IrFactor 0.1
- IrPatience 5
- IrCooldown 4
inter area interpolation
horizontal flip, p=0.5
Albumentations . L
rotation, limit[-10, 10], p=0.5
scaling to range [0, 1]

channels to capture more fine-tuned features or contours. The EfficientNet has
a very similar structure to the MobileNet but has more parameters because of
the increased FLOPS target after applying the scaling coefficient. EfficientNet
modules are taken from the various MobileNet implementations. For example,
EfficientNet uses an inverted residual block from the MobileNetV2 paper [25],
and squeeze-and-excitation block introduced with the MobileNetV3 paper [I§].
Officially, there are eight variants of the EfficientNet depending on the amount
of scaling being done across the three mentioned dimensions. Variants are in the
range B0O-B7 and in this paper versions from B0-B3 are evaluated.

3.4 Training parameters

To ensure the same experimental conditions for all the tested CNNs and to re-
move influence of different parameters on their performance, we defined training
parameters and kept them fixed for all tested networks and their subtypes. Net-
works were implemented on Microsoft Windows 10 Pro operating system using
Python 3.9 and Pytorch 1.9.0 framework [12] with CUDA 11.1 support. Training
parameters are shown in Table 2} For image preprocessing the Albumentations
library [I] was used with a fixed random seed in order for probabilistic prepro-
cessing methods to apply the same transformation regardless of the computer
or neural network. Also, to speed up the learning process and to achieve faster
convergence, input images were normalized so that pixel values are in 0 to 1
range.

3.5 Evaluation metrics

The evaluation of selected CNNs was performed on the accuracy, precision, recall,
and Fl-score calculated from the entries in the confusion matrix:
— accuracy - shows how many images are predicted correctly,
— precision - shows how much positive classified images are predicted correctly,
higher precision means fewer false positives,
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Table 3: Model statistics

Model Network Image Accuracy Precision Recall Fl-score Lat.
tier name resolution (%) (%) (%) (%) (ms)

EfficientNet-B0 224x224 95.35 99.46 91.20 95.149 5.67

L1 ResNet-18 224x224 95.15 99.13 91.10 94.95  5.58
MobileNet 224x224 94.95 99.23 90.60 94.72  6.26
EfficientNet-B1 240x240 95.55 99.03 92.00 95.39  5.76

L2 ResNet-34 240x240 94.95 99.18 90.65 94.72  5.64
MobileNetV2 240x240 94.82 99.23 90.35 94.58  5.11
EfficientNet-B2 260x260 95.60 99.40 91.75 95.42  6.01

L3 ResNet-50 260x260 95.38 99.24 91.45 95.19 5.44

MobileNetV3-Small  260x260 95.53 99.40 91.60 95.34  5.29

EfficientNet-B3 300x300 95.90 99.78 92.00 95.73  6.25

L4 ResNet-101 300x300 93.23 99.15 87.20 92.79  5.58

MobileNetV3-Large 300x300 95.40 99.51 91.25 95.20  5.595

— recall - shows model’s ability to correctly classify positive images, higher
recall means fewer false negatives,

— Fl-score - harmonic mean combining precision and recall metrics,

— number of parameters - number of trainable parameters; weights that are
learnt during training,

— processing power - number of performed multiply-accumulate (MAC) oper-
ations,

— model size - model size on disk in MB,

— inference latency (Lat.) - time required for an image to be passed through
the model for inference in ms

Additionally, Ptflops library [7] was used to acquire total deep neural network
parameter count and total multiply—accumulate operations (MAC) for a given
model.

4 Results and Analysis

To compare similar models and their learning capacity, we separated models into
four tiers based on the input image resolution and deep neural network complex-
ity. In the first tier of models (L1) there are the smallest networks along with
the lowest input image resolution. The L1 tier includes EfficientNet-B0, ResNet-
18, and MobileNet. Higher network tiers include (EfficientNet-B1, ResNet-34,
MobileNetV2), (EfficientNet-B2, ResNet-50, MobileNetV3-Small), (EfficientNet-
B3, ResNet-101, MobileNetV3-Large) for L2, L3, and L4 tiers respectively. Input
image resolution for each model within each tier reflects the EfficientNet input
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image requirement and also facilitates the direct comparison between neural
networks.

Our main evaluation results are presented in Table [3] and Fig. [d Table [3]
shows the test results of the twelve tested models on our custom fire dataset.
For every model in a tier, image resolution, accuracy, precision, recall, F1-score,
and inference latency are reported. In Fig. @] number of parameters, number of
operations and size on disk are presented to visually compare complexity and
required computational power for each tested model. Accuracy and precision
metrics are shown in the table for the sake of completeness, while the main focus
for the fire detection task are recall and F1-score metrics which are also presented
in Fig. ol In the classification task, a fire event is identified with a 1, while a non-
fire event is identified with a 0. Because of the purposefully imbalanced dataset,
in the hope to induce the fire occurrence similar to the real-life, the main metrics
of focus are recall and Fl-score. False negative detection should be minimized
because misclassifying real fire events has catastrophic material consequences
with a high possibility of endangering human lives. Data in Table [3| displays
model capabilities on completely unseen data of the test dataset which contains
a total of 4000 images. The inference latency column shows the time required for
an image to be passed through the model for inference and acquiring the result.
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Fig. 4: Model comparison by number of operations, number of parameters and
model size

Recall and F1-score graphs are the core metrics of model evaluation in this use
case and are acquired during the validation phase of each epoch. Because every
model was trained for 120 epochs, we can directly visualize the model behavior
on the validation dataset. In this case, we argue that we can use the validation
dataset for model comparison because no hyperparameters of any model were
modified based on the previous performance on the validation dataset, i.e. we
used a validation dataset of 6000 images as a test dataset for graphs in Fig. [5}

From Fig. it can be seen that EfficientNet-B0O and ResNet-18 have
a good learning start while MobileNet needs a few epochs to catch up with the
learning of the other two neural networks. Advancing a few dozen epochs reveals
that EfficientNet-B0O and MobileNet settled around the same value but ResNet-
18 having a lower recall value during the entire validation runs. Fig.
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Fig. 6: Model comparison by number of parameters and corresponding F1-score

shows very similar learning characteristics between EfficientNet-B1, ResNet-34
and MobileNetV2. It can be observed that EfficientNet-B1 requires less time in
contrast to the other two networks to obtain the same level of recall. Ultimately,
L2 networks have very similar behavior after 50 epochs, but EfficientNet-B1
achieves a higher recall value at the end of the training. Fig shows
that EfficientNet-B2 has the fastest rate of learning that did not increase after
the 25th epoch, and only oscillated in the following epochs. MobileNetV3-Small
is somewhat slower in learning speed where it stops improving after the 28th
epoch, and RestNet-50 takes the longest amount of time of 42 epochs to learn
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Fig. 7: Model comparison by number of operations and corresponding F1-score

the features of the custom fire dataset. EfficientNet-B2’s recall remains the high-
est save for the few times it was equal to MobileNet-V3’s recall during the entire
validation run. The greatest separation between given models can be observed
with the L4 tier of neural network models given by Fig. @, . The best
network according to recall metric is EfficientNet-B3 closely followed by the
MobileNetV3-Large. MobileNetV3-Large settles for the maximum recall value
1-2 epochs earlier than EfficientNet-B3 while having lower value. ResNet-101
falls short in comparison to the other two networks from the same tier and has
a noticeably lower recall value signifying it does not have the required capacity
to learn. It can be said that ResNets have become outdated in comparison with
the newer network types with the likes of MobileNet and EfficientNet.

When we consider Fig.[4] it can be observed that MobileNet and EfficientNet-B0
have similar number of parameters and GMACs. When considering MobileNets
and EfficientNets in the remaining evaluation tiers, it can be noted that Mo-
bileNets require lower computational power (up to 5 times less) and less storage
(up to 5 times less) in comparison to the EfficientNets. Furthermore, it can be
observed that ResNet models lag behind two other tested networks in terms of
number of network parameters, GMACSs, and model size on disk which confirms
the above mentioned statement that ResNet has become obsolete. Although
ResNet’s results are still rather competitive, its high computational power re-
quirements (up to 35 times more than MobileNet) and its substantially bigger
size on disk (up to 10 times MobileNets size) makes it unsuitable for use on
embedded systems and all other systems with limited resources. Rather surpris-
ingly, the EfficientNets do not accomplish higher metrics in comparison to their
baselines founded in MobileNets. Our conclusion for stated behavior lies in the
very challenging dataset, where image resolution is highly varied along with the
target content and image background used in the classification task.

Observing Fig. [0] and Fig. [7] generally we can notice close grouping of Effi-
cientNet and MobileNet models with ResNet-101 being quite significant anomaly
when we consider its number of parameters and number of operations. In Fig.
[6] in our opinion, the best models in terms of a tradeoff between the number of
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parameters and acquired F1-score, are MobileNetV3-Small and EfficientNet-B3;
we could state the same opinion as previously mentioned models contained in
the Fig. [7 In Fig. [7] the EfficientNet-B3 represents a clear advantage over other
models regarding the number of operations and acquired F1-score.

Inference latency of evaluted models is presented in Table [3] All networks
performed similarly, achieving 5.11 ms to 6.26 ms which, when transformed into
frames per second (fps), means that networks are able to process 160 fps to
195 fps which makes them all suitable for real time applications. Another thing
to consider is that this result is achieved by using high-end GPU, RTX3080,
which is not suitable for embedded systems and in that case some other GPU
with lower computational power would be used; thus, a much lower frame rate
would be achieved.

5 Conclusion and Future Work

Every year, fire causes many deaths and billions of dollars of damage. Thus,
over the last decade many new methods for fire detection emerged, especially in
the field of computer vision and machine learning. This paper attempted to give
a brief overview of these methods as well as various other hardware, software,
and hybrid systems which could detect smoke or various chemical compounds
released in the event of a fire. In the main part of the paper, the dataset acquisi-
tion process was described, along with the quantity of each class and partitioning
of the dataset on the train, validation, and test subsets. Hardware specifications
needed for further discussion of selected deep neural networks were also given
along with the comments on how to choose optimal components. Furthermore,
the main foundations of ResNet, MobileNet, and EfficientNet neural networks
from their corresponding papers are presented in sufficient detail before the dis-
cussion of validation and testing results of the aforementioned models. Acquired
results indicate that EfficientNets have very similar performance to MobileNets
but were still managing to have slightly better model metrics. ResNets managed
to maintain comparable metrics in the lower model tiers, while in the tiers with
more complex models they started to show their age in comparison to Efficient-
Nets and MobileNets. Also, when considering complexity of tested models and
their need for computational power, it can be observed that newer models like
MobileNets and EfficientNets achieve the same, or better results in comparison
to ResNets with a lot less need for computational power which makes them
suitable for embedded use cases.

Future work can be focused on the further testing of the newer CNN archi-
tectures on the custom fire dataset. The networks of interest for future testing
include EfficientNetV2 [28], and ResNet-RS [I4] as they represent direct com-
petitors within the CNN machine learning field. Additionally, the focus can be
directed to the modification of the existing dataset to create ground truths of
fire coordinates in every image where fire occurs. With a new type of dataset, a
new type of machine learning architecture can be evaluated, region-based CNNs
(R-CNNs). Furthermore, the pursuit of R-CNN implementation can aid in lo-
calization of fire in RGB images.
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Abstract. This paper is about the relationship between regret (in on-
line learning) and the rank of an ensemble’s loss matrix Y, when Y has
generated approximately adversarially. We take a learning approach to
generate an approximately adversarial Y, which is realistic in terms of
what one might expect to encounter in real-world problems where adver-
saries too must learn. We also show that this approach is more efficient
than simulation and thereby obtain better empirical studies of the per-
formance of low rank algorithms.

Keywords: online learning - regret - simulation study.

1 Introduction

The Prediction with Experts Advice problem is a well-known problem in predic-
tion theory and fundamentally important in machine learning. [8] Also, this is
a special case of online convex optimization. Online learning is performed in a
sequence of T consecutive rounds with N experts, where at round t the learner
is given a question. In each round ¢ = 1, ---, T, the learner chooses a proba-
bility vector p; € Ay, where Ay denotes the N-simplex, namely the set of all
distributions over N experts

N
Ay = {xGRN : Vi, x (i) 20/\2%-1}.
i=1

Then Nature chooses a loss vector y € [0, I]N, and the learner incurs the corre-
sponding loss p(y) = p - y. The regret is defined as follows:

T T
Regret(N,T) = Zp Sy — ke{r}ﬁnN} Z Y-
t=1 =1

A learner wishes to maintain the best strategy. Therefore, if an expert per-
formed great in previous rounds, then the expertise can be crucial guidance for
learners who need advice for many reasons. The learner can rely on the chosen
expert’s advice and decide for each round. This strategy is known as Follow the
Leader and can be interpreted as a form of empirical risk minimization.
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As described in [11], there are two types of online learning settings: stochastic
and adversarial. We undertake the adversarial setting that is less well understood
and the focus of this paper.

1.1 Online Convex Optimization and Programming

In online convex optimization, an online player iteratively makes decisions. At
the time of each decision, the outcomes associated with the choices are unknown
to the player. Therefore, prediction from experts’ advice is a special case of
Online Convex Optimization. The overall target is to minimize a continuous and
convex function over a convex subset of Euclidean space.

Convex programming is a generalization of linear programming with many
applications to machine learning. A new general framework was presented for
convex optimization over matrix factorizations, where every Frank-Wolfe iter-
ation will consist of a low-rank update [9]. The researchers also discussed the
broad application areas of this approach.

Many algorithms can be used in online convex optimization, including Follow
the Regularized Leader (FTRL), Exponentially Weighted Averaging (EWA, also
known as Hedge), and Projected Gradient Descent (PGD).

EWA is named and defined in [2]. Its fundamental idea is to weigh experts
based on their performance. More precisely, an expert with relatively high loss
will receive an exponentially decreasing proportion of weight. The update rule
is

e NYj5
- (1)

D; N
Z pie*nyi
i=1

This algorithm can be modified in many ways. One of these modifications
is called the doubling trick, in which the learning rate 1 becomes adaptive over
exponentially increasing time epochs [2]. Consequently, T' need not be known in
advance. We consider another horizon-adaptive algorithm in Section IT and the
generic EWA. These algorithms will be studied through simulation.

FTRL modifies Follow the Leader by adding a regularization term R ([6]),
which can provide stability to the algorithm. In this case, it can help ensure
the algorithm does not overfit. The standard form for FTRL for the problem at
hand reduces to

t—1
p = argmin,c Z z-y" + R(z). (2)

t'=1

OMD is a transformation of FTRL. Moreover, its update rule is naturally
interpreted as a gradient operation.
Other algorithm variants include lazy updating (e.g. [6]).
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1.2 Algorithms for Gradient Descent Optimization

Gradient descent (GD) is the simplest and oldest optimization method. It is an
iterative method in the optimization procedure that proceeds in iterations, each
improving the objective value [8].

Gradient descent algorithms for optimization have been gaining popularity
[12]. Some common gradient descent algorithms are Gradient Descent (GD),
Batch Gradient Descent (BGD), Stochastic Gradient Descent (SGD), Mini-batch
Gradient Descent (MBGD), Momentum, Nesterov Accelerated Gradient (NAG),
Adagrad, Adadelta, RMSprop, Adaptive Moment Estimation (Adam), AdaMax,
Nadam.

Since metioned previously, the study[14] shows that gradient descent algo-
rithm has been proved fruitful on this problem, as the average will approach zero.
They proposed greedy projection, a gradient descent-based technique for general
convex functions. They applied the Greedy Projection to select an arbitrary x;
€ F and a sequence of learning rates 7, 12, ... € R*. In time step ¢ (t = 0, 1,
-++.), after receiving a cost function, select the next vector z;41 according to:

o' = P2t — 0,V (ah)). (3)

A unified framework was also developed to analyze the behavior of projected
gradient descent in application to low rank estimation problems[3]. In their work,
they also used the projected gradient descent updates, that is

Fi+l = Ft— gL, (FY). (4)

The researchers in [10] used the gradient descent method earning in multi-
layer linear networks leads to minimum-rank solutions. This shows the essential
application of gradient descent, and this method can minimize the rank.

The rank of the covariance matrix of the codes is implicitly minimized by us-
ing the gradient descent learning in multi-layer linear networks leads to minimum-
rank solutions [10].

This study will focus on implementing the Exponentially Weighted Averaging
and Projected Gradient (subgradient) Descent method in an adversarial setting.

1.3 Restart Approaches

These have been studied in various fields in online learning for years. One of
the most famous applications is the adaptive regret for fixed shares given by [1].
It uses the restart approach for prediction under mix-loss by implementing the
Follow the Leading History presented by [7].

[5] applied the restart approach to EWA under branching experts. [4] also
applied the restart approach to EWA so that both the number of effective experts
and the step parameter can be set dynamically.

[11] provided the foregoing review of low rank learning and found various

settings, including sub-settings of [6], where O (\/ rT) is achievable.
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1.4 Numerical Analysis

Because theory has given an incomplete characterization of the regret or even
when it is O (\/rT>, [13] resorted to the numerical analysis of the regret for
particular algorithms by simulating adversarial strategies.

1.5 Owur Contribution

We take a slightly different approach in that we attempt to learn the adversarial
strategy. Depending on our findings, this appears more efficient.

2 Nature’s Problem

Nature will learn over K T-horizon games. Its loss in each trial k is therefore

T T
kit kit : k,t
E prt eyt — min g Y-
ne{l,...,N} P}

t=1

To enforce a rank restriction on Nature, constrain y*?* to be of the form Uk¢t:*
where U¥ € RV*" and (% € [0,1]".

2.1 Learning Algorithm: Projected Subgradient Descent

The learning algorithm employed by Nature will be projected online subgradient
descent based on [14]. There are dependencies on trial, time, and expert. For each
trial, Nature determines its strategy overall time. Then one iterates over time
to compute the EWA response. For comparison, note projected gradient descent
is both a form of proximal gradient descent and a form of OMD; the latter has
already been discussed as a form of regularized FTL.

By the calculus of subdifferentials, the subgradient (concerning y, the variable
under Nature’s control) is (omitting k)

T T
- (Z vphyt = Vyh)
t=1 t=1

T T
for any n, such that t =  min L.
y t; yn* n’G{l,...,N} f,; yn

apt.yt _ ayt

p  —
oy, oy,
= Pn>

SO

T
> Vp'yt=p
t=1
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is the matrix which is 0 everywhere but the n,th row where it is 1.
To simplify the projection, we consider substituting the constraints and re-
doing the subgradients calculations with respect to (U, £) for a fixed k (omitted).

opt - Ut

t gt
—_— ,€ 5
aUn,d Prtq

SO

T
> wptul
t=1

ouL,

oy,

For greater simplicity, rather than project U, L to guarantee UX¢%F € [0, 1]V,
we project the products U¥¢5* themselves into [0, 1]". We consider the algorithm
(Algorithm 1) the projected subgradient descent algorithm.

Algorithm 1: Projected Subgradient Descent (Nature)

Data: Input U,L, probablity vector p (the ¢ th column of Y is called
y",the k th rows and the ¢ th column of Y is called y})

Result: Get the regret

1. p=0k=1,...,N)

2. Find p* which minimizes Y (UL)" - p*.

3. subgradU;; = (z] — xt) - Lyj,i=1,...,N,j=1,...,r

4. subgradL,; = UijT X, t=1,....,T,7=1,...,r

5. U = U — subgradU - initial step size

vtrial

initial step size

vtrial

strial = 1,... nTrials

6. L = L — subgradL - Jtrial = 1, ..., nTrials

3 Learning Algorithms Under Simulation Study

The algorithm (Algorithm 2) we consider is a horizon-adaptive version of Hedge,
which also appears in [2].
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Algorithm 2: Hedge Algorithm

Data: Input N,T, loss matrix Y (the ¢ th column of Y is called y*,the
k th rows and the ¢ th column of Y is called y})
Result: Get the regret

Lpl=1p,=0k=2,....,N)
R
2. ph=—" (=N w2 ¢=2 .. T k=1,...N)
N 0¥ et
Soe t'=1
k=1
Lo Lo
3. (N,T)=>_p"-y*— min Y
1= ettty & Y

We now combine the Hedge algorithm with Projected Subgradient Descent
Algorithm (Nature), the new algorithm.

Algorithm 3: New Algorithm
Data: Input nTrials, N, T and Rank
Result: Worst regret for each rank after nTrials
initialization;
while r in range (1,Rank + 1) do
U, L = numpy.empty((T, r)) ;
L[ :, 0:r] = numpy.random.binomial(1, .5, size=(T, r));
U] :, 0:r] = numpy.random.binomial(1, .5, size=(N, r));
Y = numpy.dot(U, numpy.transpose(L));
p = Hedge(N, T, Y);
while & in range (1,nTrials) do
U, L, Y = Nature(U, L, p, T, k);
p, cumLoss = Hedge(N, T, Y);
Reg = regret(Y, cumLoss);
WorstRegret[k] = Reg.max();
end
WorstRegret = WorstRegret.max();
end

4 Simulation

In the simulations of the loss matrix, each vector component follows a binomial
distribution.

In the following experiments, we fix N = 20, T' = 20 if we do not especially
mention.

4.1 Generate The Loss Matrix

The Algorithm 4 is to generate the matrices of a not high rank r.
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Algorithm 4: How to generate the loss matrix, which has N rows and
T columus of a not high rank r (compared with the min(N,T'))

Data: Input a distribution D and a certain rank r
Result: Generate the loss matrix of a not high rank r (compared with
the min(N,T))
1. Generate three matrices: A, B,C. A is a matrix of N rows and T' columns,

and its each vector component obeys a binomial distribution.
B is a matrix of N rows and N columns, and its each vector component
obeys a binomial distribution.
C' is a matrix of N rows and IV columns, and its first  diagonal numbers
are 1, other numbers are 0.

2. Y =B x(C x A. And if Y’s element is greater than 1, make it equal to 1; if

Y’s element is smaller than 0, make it equal to 0
3. Make a judgment: if the Y’ s rank equals to r, then use it as the loss
matrix; if not, abandon it.

However, it is not efficient for higher rank r (compared with the min(N,T)):
C' is close to the identity matrix of min(NN,T') dimensions. So Y is close to the
B x A, and it is very easy for its elements to be bigger than 1. Then according to
Algorithm 3, the Y will be a matrix whose most elements are all one and rank is
lower than expected. Therefore, it is tough to get the worst regrets of high rank
r in Algorithm 3.

So we consider another way (Algorithm 5):

Algorithm 5: How to generate the loss matrix, which has N rows and
T columns of a certain rank r (high)

Data: Use binomial distribution and a certain rank r
Result: Generate the loss matrix of a high rank
1. Generate a matrix: Y. And Y is a matrix of N rows and 7' columns,and its
each element obeys a binomial distribution.
2. The Y is used as the loss matrix.

Algorithm 5 also has its disadvantage: when using this way to generate the
matrices of low rank r (compared with the min(N,T)), it is tough to get the
matrices that we want. The matrix of rank 7 must have (N —r) linear dependent
rows and (7' — r) linear dependent columns. When N, T are much bigger than
r, this can be very hard.

Therefore, in the following experiments, we use Algorithm 3 to generate the
matrices of relatively low rank r and Algorithm 4 to generate the matrices of
relatively high rank r. (when N = T = 20, we think r is relatively high if r > 18);
(when N =T = 50, we think r is relatively high if r > 42)

4.2 N =T =20 (p=0.5)

Fig. 1 shows the relationship between the worst regret and the loss matrices’
rank r with the new algorithm.
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Fig. 1: 100000 trials of Projected Gradient Descent Algorithm (p = 0.5), N =
20,7 = 20

Furthermore, in Experiment B, we will use only the learning algorithm (Al-
gorithm 1) and call this algorithm — naive simulation in our following figures.
The new learning algorithm, combined with the hedge and projected subgradi-
ent descent algorithm, is exploited to compute the regrets. Moreover, we will
use projected gradient descent in our following figures to annotate this new al-
gorithm.

Fig. 2 shows the worst regret comparison between the naive simulation and
the projected gradient descent algorithm.

7
6 -
5 4
] |
& 4
]
]
= 34
2
—— Projected Gradient Descent (N=T=20)
11 Naive Simulation (N=T=20)

123456 7 8 910111213 14 15 16 17 18 19 20
rank
Fig.2: Comparison of Projected Gradient Descent and Naive Simulation (p =
0.5), N =20,T = 20, nTrials = 100000

In Experiment B, we fix the N =T = 20, and we use Algorithm 2 with bino-
mial distribution (p = 0.5) to generate the loss matrices of certain rank r, when
r < 17; and use Algorithm 3 with the distribution D = binomial distribution (p
= 0.5) to generate the loss matrices of rank r, when r > 18. For each certain
rank r (r € {1..min(N,T)}), we do 100000 independent trials.
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From the Fig. 1, we can find three results:

1. The worst regret can decrease when the rank increases.
2. The worst regret experienced a sharp increase between rank 1 and 4.
3. The curve has a rapid decline when the rank begins to be relatively high.

About Fig. 1, it was expected that the worst regret would keep increasing
when the rank increases. However, our finding is inconsistent with that. To find
if our finding is just because the number of the trial is not significant enough to
get the accurate worst regrets, we do Experiment C.

Furthermore, from the Fig. 2, we can find three results:

1. The worst regret computed by the new algorithm is greater than naive sim-
ulation in the first ten ranks.

2. The worst regret computed by the new algorithm is more stable than naive
simulation, especially in the last ten.

3. The curve has a rapid decline when the rank begins to be relatively high.

4.3 The Accurate Worst Regret Of Small N, T

In Experiment C, we also use naive simulation to compute the regrets and fix
the N =T =5.

However, this time, we generate all the possible matrices with five rows and
five columns, and these matrices’ elements are chosen from set {0,1}. In this
case, we can get the accurate worst regret.

/\

—— Projected Gradient Descent (N=T=5)
Naive Simulation (N=T=5)

Worst Regret
[ =
N S o [e:]

[y
=)
|

°
o

1 2 3 4 5
rank

Fig. 3: All the result of binomial distribution, N =5,T =5

Fig. 3 is the picture describing the relationship between the worst regret and
the loss matrices’ rank r for both algorithms. Then we compute the regret of all
the possible loss matrices of rank r, and choose the maximum value of them as
the worst regret of the rank r. So what we get is the accurate worst regret.

From the picture and data, we can see that the worst regret can decrease
when the rank increases. So the result in the Experiment B (the worst regret
can decrease when the rank increases) is reasonable.
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4.4 For Larger N And T

Fig. 4 is the plot describing the relationship between the worst regret and the
loss matrices’ rank r.

In Experiment D, we fix the N = T = 50, and we use Algorithm 3 with
the binomial distribution (p = 0.5) to generate the loss matrices of rank r. For
each certain rank r (r € {1..min(N,T)}), we do 100,000 independent trials. In
addition, we only show the first 20 ranks’ worst regret in order to compare with
the previous experiments and also be more time-saving.

Worst Regret

5.0 1 —— Projected Gradient Descent (N=T=50)

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
rank

Fig. 4: 100000 trials for each rank of binomial distribution (N =T = 50)

From Fig. 4 and Fig. 5, we find the last three results in Experiment B are
also true, which proves that Experiment B’s findings can not only be applied to
particular N and T but also to bigger N and T

12 1 —— Projected Gradient Descent (N=T=50)
Naive Simulation (N=T=50)
10 4

Worst Regret

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
rank

Fig.5: 100000 trials for each rank of binomial distribution (N =T = 50)

Using the Hedge algorithm only to generate the loss matrices of rank r, and
using the new algorithm to upgrade the gradients of the loss matrices before the
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Hedge to generate the loss matrices of rank r is quite different. We also find that
the new algorithm operates more stable than the hedge algorithm alone.

It is reasonable that the points, where r is nearly 20, are getting smaller.
Because when the r (r < 42) is getting close to 20, it is harder and harder to
generate the loss matrices of rank r using the Algorithm 3. So the regret will
decrease. We present all the results in Fig. 6.

12 1 —— Projected Gradient Descent (N=T=20)
Naive Simulation (N=T=20)
10 { — Projected Gradient Descent (N=T=50)

= Naive Simulation (N=T=50)

Worst Regret

0

1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20
rank

Fig.6: 100000 trials for each rank of binomial distribution (N =T = 50)

5 Conclusion

Yang[13] suggested the difficulty of proving accurate upper bounds is not as
much in algorithm design as it is in uncovering how algorithms take advantage
of coincidental structure. Here we have undertaken the study of such behaviors
using simulation, offering an alternative to the brute force sampling method
employed in Yang.

In comparing our plots to Yang, we observed higher worst-case regret. This
suggests our method has better iteration complexity. However, future studies of
these two methods should consider the time cost of each iteration.

Given our results are experimental, theoretical justification or other indepen-
dent verification of them is warranted.
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Abstract. With the evolution of intelligent transportation systems, video
data obtained from traffic scenes has become one of the most beneficial
sources of information. The recent advances in the fields of pattern recog-
nition and computer vision along with the developments in hardware ca-
pabilities have attracted many researchers to attempt to apply innovative
algorithms to analyze traffic video data. In this survey, a comprehensive
analysis of the main tasks in automatic traffic surveillance systems is
presented. These tasks include foreground segmentation, object detec-
tion and classification, tracking, region-of-interest determination, and
incident detection. The state-of-the-art techniques developed for each
step of traffic video analytics are highlighted and the major challenges
are discussed along with the future scope and directions.

Keywords: Video Analytics, Traffic Surveillance, Object Detection, Track-
ing, Foreground Segmentation, Shadow Removal

1 Introduction

There is an inevitable need to monitor road traffic in order to improve the ef-
ficiency and safety of road transportation. During the 1980s, the technological
advancements in information, control, communication, GPS, computers, micro-
processors, and sensing, has led to the development of intelligent transportation
systems (ITS) [3]. Intelligent transportation systems have broad applications
in emergency vehicle notification, automatic road enforcement, setting various
speed limits, collision avoidance, car navigation, traffic signal control, parking
guidance, and automatic number plate recognition. The performance of these
systems depends on the accuracy and efficiency of data collection and process-
ing.

When it comes to making a cost-efficient choice among various sensor tech-
nologies, camera sensors are preferred in most cases due to simple installation
steps, rich visual information, and a relatively vast area of coverage provided by
each device. In general, there are two types of camera sensors used in traffic man-
agement applications, namely, traffic enforcement cameras and traffic surveil-
lance cameras. The former category refers to the cameras that are mounted
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beside or over a road and capture high-resolution pictures to detect motoring
offenses and enforce traffic rules, whereas the latter refers to the remotely con-
trollable cameras that are typically mounted on high poles and street lights and
capture live lower-resolution videos with the goal of observing the traffic and
detecting incidents.

The data received from the traffic surveillance cameras are used for vehicle
counting, object classification, speed estimation, and detecting events such as
congestion, stopped vehicles, wrong-way vehicles, and accidents. Manually pro-
cessing the huge amount of video data by human operators is a tedious and
impractical task and the results are not always reliable. With the advances in
fields of artificial intelligence, pattern recognition, and computer vision it is of no
surprise that automated techniques in intelligent video analytics have gained a
lot of attention in traffic management systems [I]. In this survey, we discuss the
core components of intelligent video analytics and their applications and chal-
lenges in processing traffic video data. The remainder of the paper is structured
as follows: Section [2] contains a brief overview of the main steps and the various
approaches applied in vision-based traffic monitoring systems. Section |3 outlines
the main challenges faced by the intelligent video analytics techniques. Finally,
further discussions and conclusions are given in Section [4}

i Video frame ;

Object detection & classification

Object detection

segmentation

(
|
| Foreground
|
: Shadow removal

|
|
|
Object classification |
|
|

Fig. 1. General flowchart of an intelligent traffic video analytics framework.
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a) Original frame (b) MOG foreground (c) GFM foreground

Fig. 2. The foreground masks extracted using the MOG method and the GFM method,
respectively. The GFM method extracts both the moving vehicles (blue) and the
stopped vehicles (red) clearly [19].

2 DMain steps in intelligent traffic video analytics

Traffic flow monitoring based on video analytics has been one of the main appli-
cations of computer vision. There are several steps taken towards developing a
fast and reliable system in order to process traffic videos. Traffic surveillance cam-
eras, commonly powered by electricity or solar planes, are installed along major
roads in urban areas, such as highways, motorways, freeways, and intersections
to provide consistent live imagery data. The live video is sent to a monitoring
center and is processed by applying intelligent video analytic techniques in order
to recognize traffic patterns, collect traffic flow parameters, and detect incidents
and anomalies. In terms of intelligent video analytics, several steps are taken to
process the raw video data and generate useful information in real-time. The
major steps after camera calibration and pre-processing are composed of vehicle
detection, classification, and tracking, region of interest determination, and inci-
dent detection [42]. Figure. (1| illustrates the general steps in an intelligent traffic
video analytics framework. This section contains an overview of the different
approaches used for each step.

2.1 Vehicle detection

Traffic surveillance cameras overlook roads, highways, and urban traffic envi-
ronments and the objects of interest are all road users including different types
of moving vehicles, cyclists, and pedestrians. Among different object detection
techniques, background modeling has been proven to be an efficient approach to
segment the foreground and obtain the location of moving objects in traffic videos
[43]. Background subtraction methods are generally categorized into five groups,
namely, basic, statistical, fuzzy, neural networks, and non-parametric methods
[37]. Statistical methods have shown notable performance and efficiency which
has made these methods most popular in real-time surveillance applications.
In most used statistical approaches the background is estimated using frame
averaging [10], single Gaussian [64], or a mixture of Gaussian distributions [55].
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7\

()

Fig. 3. The foreground mask after removing shadows. Original video frame. @
Ground truth. the results of the Ghahremannezhad et al. [20] method.

Statistical methods based on Gaussian distribution have been the most used
pixel-based approaches for modeling the background in videos due to the com-
promise between their computational cost and performance. Initially, each pixel
was modeled using a single Gaussian distribution [64]. Later, to remove the ef-
fect of noise, camera jitter, and background texture, Gaussian Mixture Model
(GMM) was proposed and each pixel was modeled by a mixture of K Gaussian
distributions [55]. The GMM method was further improved upon by efficient pa-
rameter updating in adaptive GMM (AGMM) [68] and other pattern recognition
techniques [50/9/48]. Here, we review the GMM method as the most commonly
used approach in the applications of traffic surveillance videos.

The GMM method is the most popular technique in background subtraction
due to its good trade-off between performance and efficiency. The Global Fore-
ground Modeling method (GFM) [48] is one of the best GMM-based methods
in foreground segmentation. This study has increased the dimensionality of the
feature vector in order to improve the discriminatory power of the feature vec-
tors. One of the advantages of the GFM method isthe ability to continuously
detect the foreground objects even after they are stopped. This is because a
separate global model is trained for the foreground objects and the GFM model
will maintain an accurate Gaussian distribution to model the foreground pixels.
Figure. [2| shows and example of the foreground segmentation applied on a real
traffic video data.

Shadow removal One of the main challenges of foreground segmentation in
traffic videos is the cast shadows of vehicles which has negative effects on further
video analytics tasks, such as vehicle tracking and classification. Most foreground
detection methods classify the shadows caused by moving objects as foreground
due to the similarities in the motion patterns among the shadows and the moving
objects. Many studies have attempted to detect the moving cast shadows and
remove them from the foreground class using various approaches, such as apply-
ing color information [21], applying texture information [22], or a combination
of low-level features [49].
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(a) video frame (b) ground truth (¢) ROI

Fig. 4. Examples of road extraction in traffic videos [16].

The state-of-the-art method in removing shadows from traffic surveillance
videos is presented by Ghahremannezhad et al. [20], which considers the physics-
based properties of reflection to identify potential outdoor shadows and applies
a new region-based shadow detection method along with statistical modeling for
robust shadow detection. An illumination invariant feature is used as input for
a clustering-based segmentation method where each segment is further classified
into shadow /object classes. In addition to this, six-dimensional feature vectors
are constructed for each pixel and modeled by a mixture of Gaussian distri-
butions to classify the pixels into shadows or objects. Figure. [3] illustrates an
example of moving cast shadow removal by applying the method introduced in

200.

2.2 Region of interest determination

A region of interest (ROI), is a sample within a dataset identified for a particular
purpose [6]. In the case of image and video analytics, the region of interest refers
to a subspace of the image or video frame that indicates the region of the main
focus. In the case of traffic surveillance video, the region of interest usually refers
to the road area and its proximity as the objects of interest are the road users.
In most traffic video applications the ROI is selected manually by human agents
which are required to be performed for every video during system installation.
Many studies have attempted to determine the region of interest automat-
ically by proposing various approaches which are mostly referred to as road
detection, lane detection, road segmentation, road boundary detection, vanish-
ing point detection, or ROI determination. One group of road detection meth-
ods tend to segment the road region in traffic surveillance videos by applying
low-level features [I6/I8/47T7]. Deep convolutional neural networks (DCNNs)
have also been applied for various segmentation tasks including road segmenta-
tion [33]. Ghahremannezhad et al. [I8] propose a novel Adaptive Bidirectional
Detection (ABD) of region-of-interest (ROI) to segment, the roads with bidi-
rectional traffic flow into two regions of interest automatically. In other studies,
Ghahremannezhad et al. [T6I17] propose a model for fusing various discriminat-
ing features to extract the road region reliably and in real-time. In [I7], the initial
road samples are obtained in a similar way after localizing the moving vehicles
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by applying the GFM method. In Figure. [ some examples of road segmentation
can be seen by applying the method introduced in [16].

2.3 Vehicle classification

Vehicle classification is one of the main functionalities of traffic monitoring sys-
tems and has broad applications in intelligent transportation systems and smart
cities. A high-performance classification system that is able to classify the vehi-
cles into different types accurately, can help the traffic monitoring systems with
effective operations and transportation planning.

Many studies have used methods based on deep neural networks (DCNNs)
in order to extract high-level and effective features for the task of vehicle clas-
sification [26JT4)40]. Faruque et al. [I4] apply two representative DCNN-based
methods, namely Faster R-CNN [41] and YOLO [40] to classify vehicles in three
datasets constructed from videos that are provided by the New Jersey Depart-
ment of Transportation (NJDOT). The vehicles are classified into six types as
defined by the Federal Highway Association (FHWA): bike, car, truck, van, bus,
and trailer. According to the evaluations, YOLO has performed faster and with
higher precision in comparison to Faster RCNN.

2.4 Vehicle tracking

The next significant step after detecting the objects in traffic videos is to asso-
ciate the locations of the objects at each frame with their corresponding location
across multiple consecutive frames in order to track the motion of vehicles and
other road users. Vehicle tracking in traffic videos has been categorized in a
number of different approaches based on features extracted from the data and
vehicle representation [12] which are briefly reviewed.

Region-based tracking The most-used approaches for tracking multiple ve-
hicles in traffic videos are based on regions, also called blobs, each of which
is defined to be a connected component of the image where the pixels of each
component have common properties, such as similar intensities, color, texture,
and temporal features. In this group of methods each region is associated with
one vehicle and is tracked across the frames by using various clues, such as ap-
pearance, motion, and geometrical properties. As an example of blob-tracking
methods, we can refer to the approach applied by Chang et al. [8] where the fore-
ground blobs at each frame are associated with the closest blobs of the previous
frame in terms of the Euclidean distances between blob centroids. Region-based
tracking methods are computationally efficient and work well for traffic surveil-
lance videos, especially the videos captured from the highways. Nevertheless,
these methods have poor performance in case of traffic congestion, vehicle oc-
clusion, and cluttered background as the regions merge and the vehicles cannot
be distinguished.
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Contour-based tracking Another group of multiple object tracking methods
tends to represent the objects using their contours or so-called boundaries which
are updated dynamically at each frame. These methods have a lower compu-
tational overload in comparison to the region-based methods as they provide a
more efficient description of the vehicles and other road users. However, the same
problems of the region-based methods caused by vehicle occlusions and merging
of the contours result in drastic drops in the performance of tracking. These
sorts of problems are usually dealt with by active track grouping strategies and
heuristic update policies [44].

Feature-based tracking This group of tracking methods uses various features
to represent the vehicles instead of connected components. Various representative
features, such as corners, general shape, lines, and speeded up robust features
(SURF) are extracted at each frame and matched over the sequence of frames.
The performance of this group of tracking methods relies on the discriminatory
power of the selected features. Most feature-based tracking methods [44/T5/3524]
work well under different illumination conditions, however, the partial vehicle
occlusions can have negative effects on them.

Model-based tracking In this group of tracking methods a model is projected
onto the image and matched across the frames based on the vehicle motion. In
model-based methods, [TTI4I38] the trajectories, models, and the geometrical
poses of the vehicles are recoverable and estimated more accurately compared to
other approaches. For example, Danescu et al. [IT] model the vehicles as three-
dimensional cuboids that are generated by grouping the three-dimensional points
which are obtained using stereo-vision. The tracking is performed by matching
the measurements and the models which are in turn done by intersecting the
rectangles in the bird’s-eye view and a corner-by-corner matching in the image
space.

2.5 Incident detection

Besides collecting useful traffic data one of the main functionalities of traffic
monitoring systems is to detect or predict various traffic incidents in real-time in
order to take appropriate actions upon discovering an unusual event. Along with
various sensors which the road networks are equipped with, surveillance cameras
provide useful and continuous information, such as speed, occupancy, and traffic
flow. This information can be used for Automatic Incident Detection (AID) in
order to notify the operators in the control center who are on the alert for unusual
traffic conditions. Here, we review some of the most common traffic incidents and
the various approaches attempted to detect the events automatically by applying
different algorithms.

Stopped vehicle detection Stopped vehicles in the middle or on the shoulders
of roads and highways pose a great deal of danger to the drivers and passengers
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and are one the main reasons for traffic accidents. According to the AAA Foun-
dation for Traffic Safety, approximately 12 percent of interstate highway deaths
were due to accidents on the road shoulders. There have been a number of studies
with the specific goal of detecting stopped vehicles in traffic surveillance videos.
For example, Alpatov et al. [2] apply a simple background subtraction technique
for detecting stopped vehicles by subtracting the earliest background estimations
from the current background estimation. Several other studies [53I585I5TI4]],
which are mostly referred to as abandoned object detection or stationary object
detection methods, have also attempted to propose various approaches to detect
the objects such as vehicles continuously after they stop moving.

Wrong-Way vehicle detection Wrong-way driving (WWD), also known as
counterflow driving, refers to the act of driving a motor vehicle against the pre-
defined correct direction of traffic. One of the applications of intelligent traffic
video analytics is detecting wrong-way vehicles in real-time based on various
vehicle detection and tracking techniques. There are a number of studies that
have focused on the task of wrong-way vehicle detection [39J5223]. Ha et al. [23]
implement a system that combines background subtraction with an optical flow
algorithm to analyze and learn the motion orientation of each lane and detect the
vehicles moving in the wrong direction. Rahman et al. [39] propose an automatic
wrong-way vehicle detection system for on-road surveillance cameras.

Traffic congestion detection One of the main purposes of traffic management
systems is to detect traffic congestion, otherwise known as traffic jams, in order
to analyze the information for better planning. Road traffic congestion refers to
a condition in transport where the number of vehicles exceeds a certain limit
based on the capacity of the road lanes which results in longer trip times and
increased vehicular queuing. Many studies have attempted to detect traffic con-
gestion [BOU62U7I31] in videos which helps the traffic monitoring centers with use-
ful information about traffic jams. Ke et al. [30] present a multi-step method for
road congestion detection that consists of foreground density estimation based
on gray-level co-occurrence matrix, speed detection based on Lucas-Kanade op-
tical flow algorithm with pyramid implementation, background modeling based
on the Gaussian mixture model, and applying a convolutional neural network
(CNN) for vehicle detection from the candidate foreground objects.

Traffic accident detection Traffic accidents, also referred to as vehicle colli-
sions or car crashes occur when a vehicle collides with other vehicles, pedestrians,
animals, or stationary objects on or around the road. There are several types
of traffic accidents, including rear-end, side-impact, head-on collisions, vehicle
rollovers, or single-car accidents. There have been several studies about different
approaches addressing the issue of detecting traffic accidents immediately after
their occurrence [66127/651283259/19].

Ghahremannezhad et al. [I9] propose a novel and real-time single-vehicle
traffic accident detection framework which is composed of an automatic region-
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of-interest detection method, a new traffic direction estimation method, and a
first-order logic (FOL) traffic accident detection approach. The traffic region
is detected automatically by applying the global foreground modeling (GFM)
method and based on the general flow of the traffic. Then, the traffic direction is
estimated based on blob-tracking in order to identify the vehicles that make rapid
changes of direction. Finally, the traffic accidents are detected using the rules
of the first-order logic (FOL) decision-making system. This method is capable
of detecting single-vehicle run-off-road crashes in real-time which is one of the
most important types of traffic accidents, especially on roads and highways.

Traffic anomaly detection Aside from the studies that are focused on de-
tecting a specific event, there are many studies that attempt to detect abnormal
incidents as anomaly [GII56I57I36UT3I46]. Wei et al. [61] consider stopped vehicles
as anomalous behavior and introduce a novel method based on the mixture of
Gaussian (MOG) background subtraction method in order to obtain the back-
ground which contains the stopped vehicles. The Faster R-CNN method is ap-
plied on the subtracted background in order to detect the stopped vehicles and
report them as anomalies. Shi et al. [46] present a novel anomalous driving de-
tection method by applying a new multiple object tracking (MOT) method, and
a novel Gaussian local velocity (GLV) modeling method to model the moving
patterns.

Example Automatic Traffic Incidents Detection Systems The Smart
Traffic Video Analytics (STVA) [34] systems for automatic traffic incidents de-
tection and automated traffic volume counting are featured on the NJDOT Tech-
nology Transfer Websiteﬂ Some examples of automatic traffic incidents detection
and automated traffic volume counting using hundreds of real traffic videos from
New Jersey Department of Transportation (NJDOT) and South Korea are shown
on the following websitesﬂﬂ Table shows some of the other existing visual traf-
fic surveillance systems along with their main components.

3 Main challenges in intelligent traffic video analytics

In order to have a reliable vision-based traffic monitoring system the applied
algorithms are supposed to be generalizable, accurate, and responsive, all at the
same time [67]. The traffic video streams should be analyzed automatically and
in real-time in order to provide the operators at traffic monitoring centers with
useful information about the collected traffic data, such as volume, speed, and
vehicle types, as well as to detect incidents and create alerts for different events,
such as stopped vehicles, slow-speed, wrong-way vehicles, pedestrians, and traffic
accidents. Here, we briefly discuss the main challenges in intelligent traffic video
analytics systems.

! lwww.njdottechtransfer.net/2021/11/08/automated-video-analytics
2 https://web.njit.edu/~cliu/NJDOT/DEMOS. html
3 https://iaitusa.com
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Table 1. Some of the recent 2D visual traffic surveillance systems and their major
components.

Ref. [ Year [ Detection [ Tracking [ Incidents
Wang et al. [60] |2019| YOLO Kalml;gj filter S;falgj‘igszg‘;
Tjina et al. [27] | 2019 é\fjaﬁ; Srﬁ:’;g Accident
Singh et al. [54] | 2019 ]st?li}c(rg;(?tlllgs N/A Accident
Seong et al. [45] | 2019 | YOLOV2 Kiﬁa‘foﬁlljter N/A
Huang et al. [25] | 2020 YOLO | Deep SORT [63] Near-Accident
el 2020 | o | Blob racking |
Hang ot al. {52021 | EEREEC) wor |l
Liwet al. B | 2021 | Do SOl Blob tracking | piobPee YOS

3.1 Performance and reliability

In order to be able to trust an intelligent traffic video analytics system with
automatic data processing and incident detection, the operators at the traffic
monitoring center tend to set the system at a sensitive level to minimize un-
detected events. A traffic operation center may house a large number of traffic
video feeds simultaneously and an accurate intelligent video analytics system
can help lighten the workload of operators to a great extent. Nevertheless, if
the intelligent video analytics framework fails to collect sound and reliable data
and detect all incidents correctly without too many false alarms, it can become
a liability and increase the manual work. The intelligent traffic video analytics
systems are deployed based on the existing infrastructures and the provided in-
put video data has relatively low resolution and frame-rate which makes it even
more challenging to design effective algorithms.

3.2 Flexibility and versatility

Traffic videos are continuously captured during day and night in many locations
and can vary in weather condition, illumination, resolution, and frame-rate. Some
CCTYV (Closed Circuit Television) cameras provide the functionality of adjusting
Pan, Tilt, and Zoom (PTZ) for the operator which means a wide range of possible
changes in camera viewing angle and distance. All these various possibilities
in visual properties among traffic surveillance videos, make it challenging to
construct a generalizable framework for performing the tasks of intelligent traffic
video analytics. There are factors such as illumination and weather conditions
that cannot be controlled by the operators, and the intelligent video analytics
system is expected to be able to adapt well in various situations.
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3.3 Efficiency and responsiveness

One of the main factors in designing intelligent traffic video analytics systems
is the processing time which is expected to be short enough to be able to pro-
cess multiple video frames at each second. Real-time responsiveness is a required
property for traffic video analytics applications due to the continuous stream of
video frames that should be processed without delay. The computational capac-
ity of the underlying platform, the video quality, and resolution, the number of
video frames captured at each time interval, and compliance with the specified
cost-efficiency policies are the key points of consideration in defining the limits
for the complexity of the designed algorithms.

4 CONCLUSIONS

In this survey, the developments and challenges in intelligent traffic video analyt-
ics are reviewed briefly. After a general introduction of the benefits of intelligent
traffic video analytics in traffic management systems, the main steps are dis-
cussed along with some of the most popular methods applied at each step. First,
some of the representative studies about object detection and classification are
summarized. Various methods proposed for the tasks of foreground segmenta-
tion, shadow removal, and vehicle classification are described that are applied
to detect and classify various road users in traffic videos. Then the benefits of
defining a region of interest are discussed along with a number of studies that
introduce different algorithms to detect the region of interest automatically.

Since incident detection is one of the main goals of intelligent traffic video
analytics systems besides collecting traffic data, a section is dedicated to provid-
ing a brief introduction to the studies that have attempted to detect common
traffic events. Afterward, the major challenges in intelligent traffic video analyt-
ics are briefly outlined. The imperfection of the current technologies in dealing
with various challenging factors in video analytics reveals that additional efforts
are needed for further improving the performance and generalization capability
of the current traffic video analytics systems, which renders an important field
of study with promising research opportunities.
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