Mas’ter|

MAS2TERING

* X

*
* 5k

Multi-Agent Systems and Secured coupling of Telecom and Energy gRIds

for Next Generation smartgrid services

FP7 - 619682

D3.1 Multi-agent systems holonic

platform generic components

Lead Author: Hassan Sleiman (CEA), Meritxell Vinyals (CEA)

With contributions from: Sandra Garcia Rodriguez and Lois Vanhee
(CEA), Michael Dibley (CU), Shaun Howell (CU), Jean-Laurent Hippolyte

(CU), Yacine Rezgui (CU), Julien Ardeois (Engie)
1" Quality reviewer: Juan M. Espeche (R2M)

2 Quality reviewer: Monjur Mourshed (CU)

Deliverable nature:

Software (O)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date:

29 February 2016 (M18)

Actual delivery date:

30 May 2016 (M21)

Version:

1.0

Deliverable D3.1

1

MAS2TERING Multi-agent systems holonic platform generic components

Version 1.0
May 2016

A
Mas’ter|ng £

Abstract

This deliverable is intended to provide a limited public release of the software components of the
multi-agent holonic platform developed in MAS2TERING. This document provides the specifications
for the smart grid data model for MAS2TERING, the agents and their behaviours that will run in the
multi-agent system platform, and the constraints and the objectives for these agents. These
specifications were obtained from the requirements obtained in D2.1, the use cases that follow the
Universal Smart Energy Framework (USEF) framework described in D6.1, and the multi-agent
systems (MAS) platform described in D2.2. The GAIA methodology, which provides the
methodological tools towards successfully and efficiently implementing problem solving MASs and
which has been used in D2.2, has also been used in this deliverable. It is completed with the
GAIA2JADE, which complements the implementation-independent GAIA methodology to support
MAS development using the JADE framework. In addition, this document is accompanied by a
software implementation of those components.

[End of abstract]

Deliverable D3.1 2 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

* % %
* 4 %

)
~ I~
‘ ‘ \\

Mas’ter

* e *

Executive summary

The development of the multi-agent, holonic, and secure platform in MAS2TERING is the main focus
of this deliverable. This platform aims at providing an integrated platform for distributed management
of the Smart Grid, based on multi-agent systems. Such platform shall allow the optimisation of
generation, storage and distribution, and upgrade the grid with self-healing capabilities, which will be
the focus of the deliverable D3.3. This platform will be closely integrated within the high-level grid
architecture, provided in the deliverable D2.2 from WP2.

This document is based on the use cases defined in Deliverable D6.1, and the Universal Smart Energy
Framework (USEF), extensively studied in the deliverable D1.6 and with which MAS2TERING
project aligns. The specification is performed following the GAIA methodology, whereas the
implementation is performed using the GAIA2JADE process; i.e., we devise the multi agent system,
using the JADE framework, based on the GAIA models from the analysis and design phases.

Universal Smart Energy Framework (USEF) is a reference framework for market design, actor
interactions and common flexibility services between the actors. Since MAS2TERING aligns with
USEF, the data model, the agent types and their roles have been identified and specified based on
USEF’s specifications. These agents are: Device agent, Customer Energy Management System
(CEMS) agent, Aggregator (AGR) agent, and Distributor System Operator (DSO) agent.

MAS2TERING defines three use cases in the deliverable D6.1, which will be used to validate the
solution based on multi-agent systems. The first use case focuses on home-level optimisation,
including the interoperability and the connections to handle requests/connections to the flexibility
market via the aggregator. Agents involved in this use case are the Device agents, and the CEMS
agent. The second use case deals with the local management, at the district level, by involving the
AGR, which communicates with the CEMS agents deployed in the houses of the local community.
The third use case extends the previous use case since it considers the entire low voltage power grid as
the union of many local communities in a given area. This is performed by involving the DSO agent,
which communicates with the aggregators to negotiate the power plans and to inform the congestion
points of the power grid, if any, and consequently procure flexibility for congestion/capacity
management.

GAIA methodology, which has been applied in deliverable D2.2, is also followed in this deliverable to
complete the development phase. GAIA starts at the analysis phase by collecting the specifications of
the multi-agent based system. It identifies the global behaviours of the system, the roles model that
captures the basic skills required for each type of agent, the interaction modes that captures the needed
interactions based on the previous roles, and the rules, which are the constraints on the execution
activities of roles and protocols. The analysis phase of GAIA produces a preliminary roles model, a
preliminary interaction model, and a set of organisational rules. Then, the design phase in GAIA aims
at producing the complete specification of the MAS following these four sub-phases, namely:
definition of the overall organisational structure, considering the adopted organisational structure to
update the role and interaction models, the definition of the agents models by specifying agents’ types
and their instances, and the definition of the services model that defines blocks of activities with their
conditions related with the agent roles. Finally, GAIA2JADE provides the process to develop the

Deliverable D3.1 3 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

specified agents, roles, behaviours, services, and protocols in JADE. Figure 1 illustrates an overview
of this deliverable.

Universal Smart Energy Smart grid related data model standards I, |
Framework " EC E
1| O e | gt At () Energy @home /) openADR = E
I. UJo) =, Energyv@Home data model OpenADR profile 3
— 1 CIM specification -4

-

=
2
z
s
2
2
g
~
)
2
8
2
)
Z‘.
-
2
= =
s a
&
e g
=
g2
g
Gaia
Analysis

E
s
]
£
£
%
£5
Tz
2
]
8
4
-y
Gaia
Design

| I
- &
— 53
Agents Activities ey ==
protocol a §
33
il

Figure 1: Summary of this deliverable contents

This deliverable aims at providing the specifications and the implementation of the data model, the
constraints, the agent model, and the behaviours of the agents. We first provide the background of our
specifications by briefly describing the agent types identified based on USEF, the use cases, the
followed methodology, and the MAS platform where our solution has been developed. Then, the core
of this document provides the smart grid data model, the agents and their behaviours, and the
constraints and objectives of the agents and the smart grid devices. The deliverable is completed with
deliverable D5.3 and D5.4 where the communication aspects of the agents are studied.

A research paper, based on this deliverable, has been submitted to CASE special session in IEEE
Smart Cities conference!. The paper also includes some contents regarding communication from D5 .4,
and is attached as Annex in this deliverable (Annex E.1).

1 http://events.unitn.it/en/isc2-2016/special-sessions

Deliverable D3.1 4 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

Masterine .
Document Information
IST Project FP7 - 619682 Acronym MAS2TERING
Number
Full Title Multi-Agent Systems and Secured coupling of Telecom and EnErgy gRIds
for Next Generation smart grid services
Project URL http://www.MAS2TERING.eu/
Document URL
EU Project Officer Patricia Arsene
Deliverable Number | D3.1 | Title | Multi-agent systems holonic platform generic
components
Work Package Number | WP3 | Title | Multi-agent systems and optimisation
Date of Delivery Contractual | M18 Actual M21
Status Version 1.0 final o
Nature prototype O report 0 dissemination O
Dissemination level public X consortium O
Authors (Partner) CEA
Responsible Author Name Hassan Sleiman E-mail Hassan.sleiman@cea.fr
Partner CEA Phone
Abstract This deliverable is intended to provide a limited public release of the software
(for components of the multi-agent holonic platform developed in MAS2TERING.
dissemination) This document provides the specifications for the Smart Grid data model for
MAS2TERING, the constraints and the objectives, and the agents and their
behaviours that will run in the multi-agent system platform. These specifications
were obtained from the requirements obtained in D2.1, the use cases that follow
the Universal Smart Energy Framework (USEF) framework described in D6.1,
and the multi-agent systems (MAS) platform described in D2.2. The GAIA
methodology, which provides methodological tools towards successfully and
efficiently implementing problem solving MASs and which has been used in
D2.2, has also been used in this deliverable. It is completed with the
GAIA2JADE, which complements the implementation-independent GAIA
methodology to support MAS development using the JADE framework. In
addition, this document is accompanied by a software implementation of those
components.
Keywords Multi-agent system, MAS2TERING agents’ model, Smart grid model, messages
ontology, data model.

Deliverable D3.1 5 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

Version Log

Issue Date Rev. No. | Author Change
03/11/2015 0.1 Meritxell Vinyals ToC released
09/11/2015 0.2 Meritxell Vinyals Added Section 1.1 and 1.2
01/12/2015 0.3 Meritxell Vinyals Added the Section 3.1 agent model.
29/01/2015 0.4 Meritxell Vinyals Completed Section 3.1
05/02/2015 0.5 Meritxell Vinyals Completed Section 3.2
10/02/2016 0.6 Sandra Garcia Completed Section 2.1 and 2.2
18/02/2016 0.7 Sandra Garcia Completed Section 4
22/02/2016 0.8 Sandra Garcia Reviewed Section 4. Format to document,
table and figures list and legends added.
23/02/2016 0.9 Meritxell Vinyals Added missing descriptions.
26/02/2016 0.10 Shaun Howell, Jean- Completed section Smart Grid data model
Laurent Hippolyte
29/02/2016 0.11 Hassan Sleiman Prepare the advanced draft considering the
reviewers comments.
15/04/2016 0.12 Lois Vanhée Added documentation about agent and
behaviour implementation.
15/04/2016 0.13 Hassan Sleiman, Updated specification about agent and
Lois Vanhée, behaviours
Meritxell Vinyals
25/04/2016 0.14 Hassan Sleiman Updated the data model.
Jean-Laurent Hippolyte | Review and update the document.
27/04/2016 0.15 Hassan Sleiman Review and update the document.
30/04/2016 0.16 Hassan Sleiman Update UML diagrams and Annex.
11/05/2016 0.17a Juan Manuel Espeche Deliverable review
12/05/2016 0.17b Monjur Mourshed Deliverable review
16/05/2016 0.18 Hassan Sleiman Deliverable modification addressing reviews
20/05/2016 0.18a Juan Manuel Espeche Deliverable review (2™ round)
Monjur Mourshed
30/05/2016 1.0 Hassan Sleiman Deliverable final version.

Deliverable D3.1
MAS2TERING Multi-agent systems holonic platform generic components

6

Version 1.0
May 2016

A
Mas’ter|ng

* X %

.
* gk

Table of Contents
L Yo UL A VZI VT o100 - VRS 3
Document INFOrMAtioNoocuiiiiiiiiiic e s s 5
VEISION LOB.ciiiiiiiiitiiiiiuiutiiiiiiieasaseseeeeeeeeeeeeeeeeeeeeeeeeetesestesasesesssasssaaasaassessesaeseeeeeesereeeseessessssssssssssnnnnssnnnnns 6
TabIE OF CONETENTS ...eiiiiiiiiiite e st sba e st e s na e e snn e snne s 7
[T o i 7= { U =T PP PPPPPP 10
LISt OF TDIES 1o e e 12
ADDIEVIALIONS .o e s 13
DEFINITIONS ..ttt ettt sttt s e e snaee e 14
1 INEFOAUCTION ceiiiiiiii e st ra e et e s et e s et e srae e snaee e 16
B 2 T 1ol <=4 o TV o T PSPPSR 19
2.1 Agent types and roles based on USEF frameworkcooovvviiiiiiiieie e 19
2.2 MAS2TERING USE CASES...euiiiiiiiiiiiiiiiiiiiiiiicin et 20
2.3 V1T g oo [o] [} Y PP PPPTTP 20
2.4 Y PN o1 F- 1 o] o 1 1 J U 23
241 USEr INTEITACE .. cciiiiiiiic e e 23
2.4.2 Y aaF- L =g 1o I 4T Yo L= PP PPPP TP 23
2.4.3 AZENT MOUE .eiiiiiiiii i e e e e e e s st b e e e e e e e e e e e eabrereeees 24
2.4.4 Constraints and ODJECHIVES ...cceueiiiiiiiiiic e 25
245 Communication and ProtocCols.........coovviiiiiiiiiiiiiiec e 25
2.4.6 LYol U gAY oo] 1Y o Yo T 0 1= o) PN 25
2.4.7 ULilIEiES COMPONENT....oiiiiiiiirirre et e e eeee e e e e raeeeeeeeeeeaeaaeens 26
3 SMArt Grid MOl ..o s 27
3.1 TRE CIM ettt sttt sa et e s bbbt e ae e e bt sh e et e nhe e et nbeeeareennees 27
3.2 THE OPENADR ... e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeras s s ra b s b s br st aaaeeeeeeeeaeaeens 29
33 Energy@Home data MOdel.......c.uuiiiiiiiiiii e 30
3.4 Use case based description logic elicitation........ccccvviiiiieiiiiiiii e 33
35 Domain perspective of energy flexibility........cccoovviiiiiiiii 33
3.6 Candidate generic domain ontology - OWL CONSEIUCES......uuvveeieieeiiriiiiiiiiieeeee e e e sriiieeeeee 35
3.7 Candidate protocol payload ontology — OWL CONSEIUCES.....uuveieeieiiiiiiiiiiieeeee e 37

Deliverable D3.1 7 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components

May 2016

A
Mas’ter|ng

* X %

.
* gk

3.8 Candidate ontology - JADE CONSEIUCES .cocueviiiiiiiieieeeiiiciiiireeeeee e e s e s sssirreeeeeee e e e e e s ssaanseaneees 38
3.9 Alignments with existing standardscoooiiviiiiiii e 38

4 The ABENES MOUEI ...uiiiiiiiiiiiie e e e e e s st e e e e e e s e e s s bbb baaaeeeeeeeessansssssreneeens 41
411 Distribution System Operator (DSO) AZENt......cceeeeeiciieeeeeiiiee e e e e e 41
4.1.2 ABEIrEgator AGENT .ot e e e e e e b e e e e e b s 44
4.1.3 Consumer Energy Management System (CEMS)......ccoocivieiiiiiiieeeeiieee et eeinee e 46
4.1.4 Do ol Y == o | A PP PPPPPPPN 47
4.15 BENAVIOUIS ..ottt e e 51

5 Constraints and 0DJECHIVES ...ocuuuiiiiiieiiic e e e e e e e e eeees 67
5.1 LCT=T 0T =T =1 {0 PP 69
5.2 CUItailable LOAdcooiiiiiiiiiiic e e e 69
5.3 Deferrable 10ad ..o e 70
54 (o] - 11T PP PP POR P PPPPPPPTORPPPPPPR 70
5.5 FIXEA 10@Q .t 71
5.6 EXTEINAL Tt 71
5.7 TransSMISSION TIN@..cciuiiiiiiiiiiie e s s 72

6 Behaviours and agents involved in the USE CASESciiiiviviiiiiiiiiieiie e 73
7 CONCIUSIONS @NA NEXE SEEPS cevirrrerrriiiiiitiiicirieieteeeeeeeeeeeeeeeaeeeeerereeererererrstsrararar——————aaaaeeaeeeeeaeees 75
RETEIENCES ettt ettt a e et e s et e st s e e e nas 76
ANNEX A Lo e e e e e e r e e e e e e s s aaae 78
Al Finite State MachinesS.......cooviiiiiiiiiii e e 78
ANNEX B e e e e 79
B.1 Conversion process from ontologies t0 JADE.........ccovviiiiiiiiiiiieee e 79
ANNEX € e e e e e e e e e e e s s aaan 81
C.1 UML Diagram for DSO agent behavioUrscoovviiiiiiiiiieeice e e e e e e 81
C.2 UML Diagram for AGR agent behaviourscoovviiiiiiiiiiii e 82
C.3 UML Diagram for CEMS agent behaviourscooociiiiiiieiieiec e sriereee e e e 83
C4 UML Diagram for Device agent behavioursccccuvviiiiiiiiiiiiiicee e 84
ANNEX D e e e e e aaae 85
D.1 TaaY o1t =] g1 - L o] o HE SO 85
ANNEX E oo e e e e 93

Deliverable D3.1 8 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

2 ‘m‘ XX * %
Mas’ter(ng £
E.1 Paper submitted to CASE special session in [EEE Smart Cities. ...ccccvvvveeeiieeeiiiiiiiiiiiiieeeeeeeeennn 93
Deliverable D3.1 9 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

AN\
Mas’ter|ng %

* ok

* %

List of figures

Figure 1: Summary of this deliverable CONTENTSooiiiiiiiii e 4
Figure 2: The GAIA2JADE process and the JADE implementation process packagecccocvvvvveeeeeennnn. 17
Figure 3 GAIA2JADE definition of JADE behaviours and agents implementation process [1].............. 22
Figure 4: MAS platform arChit@CtUrecciiii i e e e e abreree e e e e e e e e s 23
Figure 5 View of core classes of the MAS IEVELucuiiiiiiiiiiii e 24
Figure 6: Main WG14 / IEC 61968 CIM PACKAZESccecuveeeitreeeciieeeitteeeereeeitreeeeiveeeetveeeetveesetsesssseesnsneeans 28
Figure 7: Smart appliance user interface based on the Energy@Home modelcccoevvuvvivirveeenennnn. 30
Figure 8: Breakdown of energy profile objects and properties in the Energy@Home data model...... 31
Figure 9: MAS2TERING model layers (based on Xtensible Solutions presentation)ccccccvveeeennnee. 32
Figure 10 Domain perspective of load curtailment. Black profile - desired load, red line - curtailed
[T IO P P PP PP PPP PSPPI 34
Figure 11 Full generic OWL model Class ISt ...c.uuuiiiiiiiiiiiiiiiiiiiiiieeee s e e e sanrereeeee e e e e s 35
Figure 12 OWL MVD focusing on energy scheduling CONCEPLS.....uuviiiiiiiiiiiciiiiiiiieeeee e 36
Figure 13 OWL MVD focuSing 0N deViCe CONCEPLS...uiiiiiiiiiiiciiiiiiieete et e e srsirrreee e e e e e e e s s ssaaarrreeeeeeeeees 36
Figure 14 OWL MVD focussing 0N €CON0MIC CONCEPLS ...eevvicurrriiiieiieeeeeeiiiiiiirreeeeeeeeeeessssnrnrereeeeesesees 36
Figure 15 Generic OWL model data property specification........cccccceeieiiiiiciiiiiieeeee e 37
Figure 16: Full class list for MAS-coupled ontology, and example of class property specification....... 38
Figure 17 Alignment of ontological concepts with IEC 61968-9cccovvviiiiriiiiiiiiieeeeeessciiirreeeee e 39
Figure 18 Alignment of ontological concepts With CIIMeuiiiiiiiiiiiiii e 39
Figure 19 Alignment of ontological concepts with Energy@Homeccccceeviiiiiiiiiiiiciiiiicceeee 40
Figure 20: Overview of the FSM components and used SYNTaXescoevvvvuriririeeiieeeieisiiiiireeeeeeeee e 41
FIBUIE 21. FSIM CEMS QENT ittt s s s e e e e e e e e e e e e e e e e e eeeeee e e e aaaeee b abeatebasassannnann 47
FIBUIE 22. FSIM DEVICE @8BNT..ciiiiiiiiiiiiiiiiiieeeeeeeeee ettt s s s s s s e s e e e e e e e e e eeeeeeeeeeeeeeeaaaeeeeebeaeesssaasannsnnn 49
Figure 23 Agents hierarchy in JADE........cooiiiiiiiiiiiiiiiee et e e e e e e e e e s e s s s aaareraeeeaaeeee s 49
Figure 24: Main classes in the Behaviour package.......ccccoovviiiiiiiiiii e 51
Figure 25: DSO FSM behaviours UML di@8ramcceeiiiiiiiiiiiiiiirieeeeeeeessssiiinreeeeeeeeesssssssnnnsensessesssees 52
Figure 26 AGR FSM behaviours UML di@Bramceceiiiiiiiiiiiiiiiiieeeeeeeesssssiiinneeeeesesesesssssnnnsensessesesses 55
Figure 27: CEMS FSM behaviours UML di@gramceiiiiiiiiciiiiiiieeeeeeeeessissiiinreeeeseeeeeessssnvnnsensessesesens 60
Figure 28: Device agent FSM behaviours UML diagramcccccuvviiieiieiiiniiiiiiiieeeeeee e esssiiivereeeee e e e 63
Figure 29 Classes in the variable Packagecccuuuviiiiiiiiii e 67
Figure 30: Classes in the constraint PACKage.uuiiiiiiiiiiiiiii e 68
Figure 31: MAS2TERING @8Nt CIaSS .uvviiiiiiiiiiiiiiiieiieeee e ettt e e e e e s e st e e e e e e e e e e s s s saaabreraeeeaaeeeeas 68
Figure 32 Except of JADE ACL vocabulary definition.......cooooeiiiiiiiiiii e 79
Figure 33 Example of JADE ACL ontology class definition.........ccceeeeiiiiiiiiniciiiiee e 80
Figure 34 Example of JADE ACL ontology predicate definitioncccccccevvvvviiiiiiiiiieeeee e, 80
Figure 35: AZENt Class dIagramS. .. . i i i iiiiiiiiteeee e e e e e ee s e e e e e e e s s s s rrreeeeeeeeesesssssssesreraeeaaeasees 86
Figure 36 Code of the DSO setup fUNCLION. ..cceuviiiiiiiiiic e e e e 86
Figure 37: Code of the “action()” function for the RegisterLongTermCongestionPoints behaviour. ...87
Figure 38: Code of the definition of the exit events of the DSOValidate behaviour..........ccccvvveeeeeennn. 87

Deliverable D3.1 10 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

* X %

*, e
Figure 39: Code of the FinalEvents and onEnd () function for the GridSafetyAnalysis behaviour.
.. 88
Figure 40: Code of the action function of the RegisterLongTermCongestionPoints
DENAVIOUN .ttt ettt e e e sttt e s e b bt e e e e ab bt e e e e te e e s e nbbaeeeeenres 88
Figure 41: Code of the state definition for the DSOBEhaVIiOUT iiiiivvviiiivciiiiieieeeeee e 89
Figure 42: Code of the onEnd () function for the DSOValidate behaviour........cccovvuiiiineennnnnnnn. 89
Figure 43: Events handled by the DSOBENAVIOUTcciiiiiiiiciiiiiieeeee e e s saarrreeeee e e e s 90
Figure 44: Code for defining the transitions of the DSOBehaviour. coiieieeiieeeieiisiiirreeeee e 91
Figure 45: High-level overview of the DSO Behaviour class and direct relationships.......cccccccvveeeeeennn. 92
Figure 46: Detailed overview of the DSO Validate class and direct relationships........ccccccevvvvvveeenennnn. 92
Deliverable D3.1 11 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

2 PN
Mas’ter(ng N
kg k
List of tables
Table 1 Agent types and their FOIES ..o e e srre e e e e e e e e e s s saanes 19
Table 2 Communications BetWEEN AGENTS......uuiiiiiiiiii e e e e e e s s aanes 20
Table 3 Classifications of likely flexibilities Of dEVICES.......uuuuiiiiiiiiieiiieee e 34
Table 4 Agent type description tEMPIate... ... e e e e e e s s 41
Table 5 Behaviours description t€MPIAteooevveeeieiiiiiiccccrrerer e e e e e ee e e e e e e e e e eeee e aas 51
Table 6 FIXed LOAA ParamEters ...cceeieiei et e e e e e e e e e e e eeeeeeeeeeeeeeeeeseaesesassararanaanannnnns 71
Table 7 EXtErNal TiE ParamELers ..cocceeei i i et e e e e e e e e e e e e eeeeeeeeeeeeeeeseseeesessssasasannannnnnnns 71
Table 8 AZENTS USE IN USE CASES .uiiiiiiiiiiiiiiiiiieeetee e e e e esssiiitrreeee e e e e e ssssabbaaeeeeeeeeesessssssessnneeaeeeesesssnnnnnns 73
Table 9 BEhaviours USEd iN USE CASES ..ccvvuuiiieiiiiiieeeeiiiieee sttt e e sttt e e e sttt e e ssibeeeessabbeeessnbreeeesannnneeess 74
Deliverable D3.1 12 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components

May 2016

Masterine L
Abbreviations
ACL Agent Communication Language
AGR Aggregator
API Application Programming Interface
BRP Balance Responsible Party
CEMS Customer Energy Management System
CIS Component Interface Standards
CIM Common Information Model
DER Distributed Energy Resource
DF Directory Facilitator
DSO Distributor System Operator
FIPA Foundation for Intelligent Physical Agents
FSM Finite State Machine
HAN Home Area Network
IRM Interface Reference Model
JADE Java Agent Development Framework
LGPL Lesser General Public License
MAS Multi-Agent System
MVD Model View Definition
OMG Object Management Group
OpenADR Open Automated Demand Response
OSGi Open Services Gateway initiative
OWL Web Ontology Language
Qr The flexibility utilised
Qtot The total energy consumption
RDF Resource Description Framework
PEV Plug-in Electric Vehicle
SPEM Software Process Engineering Meta-model
Tomin Minimum amount of time the task requires to be completed.
TSO The Transmission System Operator
ucC Use case
UML Unified Modelling Language
URI Uniform Resource Identifier
USEF Universal Smart Energy Framework
WG Working group
WP Work package

Deliverable D3.1 13 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components

May 2016

* X %

A\
Mas’ter|ne C

* ok

* %

Definitions

FIPA: FIPA is an IEEE Computer Society standards organization that promotes agent-based
technology and the interoperability of its standards with other technologies.

JADE framework: JADE (Java Agent Development Framework) is a Java software Framework. It is
intended to simplify the implementation of multi-agent systems through a middle-ware that complies
with the FIPA specifications and through a set of graphical tools that support the debugging and
deployment tasks.

Multi-agent System (MAS): it is a system that models an application as a collection of components,
called agents, which are characterised by their autonomy, proactivity and an ability to communicate.
Agents in a MAS are considered improving the current methods for conceptualising, designing and
implementing software systems, and may also be the solution to the legacy software integration
problem.

GAIA: It is a methodology for the analysis and design of agent-based systems. The key concepts in
GAIA are roles, which have associated with them responsibilities, permissions, activities, and
protocols.

GAIA2JADE: It is a development process for the agents that uses the GAIA models and provides a
roadmap for transforming GAIA formulas to Finite State Machine diagrams and then provide some
code generation for JADE implementation.

Finite State Machine (FSM): It is a mathematical model that can be used to model systems in
different areas, including software applications and communication protocols. It is composed of states,
connected by means of transitions, which are run once the transition conditions are fulfilled to pass
from one state to another. Please check Annex-A for more details.

CityGML: It is an open XML-based data model and format for the storage and exchange of virtual
3D city models. It defines the classes and relations for topographic objects in cities and regional
models.

A-plan: the expected consumption profile during the day of delivery for a given Aggregator portfolio
of Prosumers. This concept is aligned with USEF framework.

P-plan: the expected consumption profile during the day of delivery of a Prosumer. This concept is
aligned with USEF framework.

D-prognoses: the expected consumption profile during the day of delivery for a given aggregator
portfolio of Prosumers including only Prosumers related to a particular congestion point (i.e. the D-
prognoses can be derived from the A-plan of an AGR excluding all prosumers not related to the
particular Congestion Point). This prognosis is sent by the AGR agent to the DSO agent in order that
the latter can perform grid safety analysis. This concept is aligned with USEF framework.

Deliverable D3.1 14 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering £

CEMS: the functional role defined in Common Information Model by CEN-CENELEC-ETSI Smart
Grid Coordination Group. The CEMS concept is identical to the USEF BEMS (Building Energy
Management System) but it operates at home level.

Device Abstraction Layer: a specification from OSGi Residential Group that specifies the set of
APIs that next-generation Energy Boxes will expose to provide access to physical devices through a
uniform interface.

Deliverable D3.1 15 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

AN\
Mas’ter|ng s

* ok

* %

1 Introduction

This deliverable summarises the design and the implementation of a multi-agent platform for the
optimisation and the management of the grid for based on flexibility. It is a first step towards the
development of such multi-agent holonic platform for MAS2TERING. Since this deliverable is of
Software nature, this document provides the specification details for the implementation of the multi-
agent platform and its main components by providing their design and implementation.

A holon is a self-similar or fractal structure that is stable and coherent and that consists of several
holons as sub-structures. In a holonic multi-agent system, an agent that appears as a single entity to the
outside world may in fact be composed of many sub-agents and conversely, many sub-agents may
decide that it is advantageous to join into the coherent structure of a super-agent and thus act as single
entity.

Agents are intelligent software components that can connect to hardware in order to implement
physical actions. The intelligence is assigned to these agents through models describing the
stakeholders’ business or interest in terms of: 1) objective function to be maximised or minimised; and
2) constraints that describe their business/physical models. Constraints can either be hard constraints,
which set some conditions that must be strictly fulfilled (otherwise the solution is not considered as
valid), or soft constraints, which set the costs for some conditions by penalising it in the objective
function.

Multi-agent Systems (MAS) have become popular solutions to tackle the complexity of decentralized
systems. In a multi-agent approach, each component (physical or abstract) of a system is autonomous
and can interact or communicate with their environment and with other agents via predefined
interfaces. MAS have proven to bring together many disciplines in an effort to build distributed,
intelligent, and robust applications especially for smart grid solutions. A number of prominent agent-
oriented design methodologies have been proposed in the literature and applied by practitioners.

The GAIA methodology provides methodological tools towards successfully and efficiently
implementing problem-solving MASs [1, 2]. The first phase of GAIA is the analysis, which extracts
from the system requirements: (a) the roles of the organization (including an informal description,
permissions, activities and protocols to be performed by the role) and (b) the interactions that should
be conducted (including the purpose, the initiator, the responder, inputs, outputs and processing to be
performed by the interaction). The output of the analysis phase is then used towards producing more
concrete artefacts in the design phase, which further describes the agents (types of agents in the
system), services (activities to be performed by a role) and acquaintances (describing who is connected
to whom). GAIA methodology was explained and followed in deliverable D2.2, where the agents’
roles and models have been presented.

GAIA2JADE complements the implementation-independent GAIA methodology to support MAS
development using the JADE framework [3, 4]. It adds an additional phase that follows GAIA’s
design phase, called JADE implementation. GAIA2JADE allows developing real-world MAS that had
been analysed and designed using GAIA, and that shall be implemented within JADE framework.
The JADE implementation phase provides MAS developers with systematic steps and guidelines to
produce the agents’ Java code and a repository communication protocols, the implementation of the

Deliverable D3.1 16 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering £

activities, and agent behaviours. GAIA2JADE process was described using the Software Process
Engineering Meta-model (SPEM) proposed by the Object Management Group (OMG).

The JADE implementation process involves the developer and produces two software products: a
repository of behaviours (i.e. reusable pieces of code that can be used for devising agents or other
behaviours that extend existing ones), and the JAVA code with the agents built using these
behaviours.

6\ GauaZJADE‘

o —
ot - Impl ntation
Requirements Anshale 2 4 pe,me 18(70 |
Capture e *W
veloper \,
A (A T 1.4
2J 2) T h-mp‘emenlMAS(! ?""“':’5 Agents Java
Desion JADE POy code
9 Implementation

Figure 2: The GATIA2JADE process and the JADE implementation process package

Following the analysis phase carried out in WP2, this deliverable uses the GAIA methodology for the
design of the MAS2TERING multi-agent framework and uses the JADE Framework for the
implementation. The mapping is performed using the GAIA2JADE methodology. The main outputs of
this deliverable are the high-level software components and the recursive and hierarchical structures
that implement the holonic approach of the multi agent platform. Mainly, these components are the
data model for defining the grid model and the ontology used for message exchange between the
agents for the smart grid, the agents and their behaviours, and the constraints.

As shown in Figure 2, from the four processes that compose the GAIA2JADE process, this deliverable
focuses on the JADE implementation process. It strongly builds on the deliverables D2.1 and D2.2 by
taking as input the requirements and the five GAIA models defined in deliverable D2.2. The output of
this deliverable is the implementation of generic high level software components (mainly the data
model, the behaviours and the agents), generic interaction protocols and the recursive and hierarchical
structures that implement the holonic approach. The software elements provided in this deliverable,
which are completed with the communication protocols defined in D5.3 and D5.4, will define the basis
for the management and optimisation algorithms developed in deliverable D3.3. This code will be
used to extend our platform components described in D2.2

To utilise the application dependent data in the agents, the domain ontology has been developed, based
on the USEF framework [5], and existing knowledge models of the domain. The data model, or
ontology, formalises the concepts and relationships in the domain; both those which constitute
message payloads between agents, and those which describe the agents themselves. This modelling is
based on existing standards, extended to the USEF framework and the MAS2TERING use cases. The
deliverable also specifies the activities refinement table, which defines the application-dependent data

Deliverable D3.1 17 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

N\
Mas*tering i

* ok

* %

(in UML), their structure and the algorithms that are going to be used by agents in the MAS2TERING
solution

Based on the use cases defined in deliverable D6.1, the main implemented agents that are described in
this deliverable are as follows: 1) the Distributor System Operator agent (DSO); 2) the Aggregator
(AGR) agent; 3) the Customer Energy Management System agent (CEMS); and 4) Device agents
(with seven subtypes) that abstract the flexibility provided by the different physical devices. These
software elements will define the base where management and optimisation algorithms (see tasks 3.2.
and 3.3 in WP3) will be integrated. The particular algorithms and behaviours related to such
management (optimisation and prediction) algorithms will be implemented as part of future
deliverables D3.2 (i.e. prediction and forecasting algorithms) and D3.3 (i.e. optimisation algorithms).

This document is organised as follows: Chapter 2 details the background from which the specifications
for this deliverable has been obtained (USEF and MAS2TERING use cases), and the followed
methodology (GAIA and GAIA2JADE), in addition to the MAS2TERING platform, where our
solution will be integrated; Chapter 3 describes the Smart Grid model that include the CIM data
model, integrated with other standards, and the ACL messages ontology; Chapter 4, provides the
specifications for the Agents model and their behaviours; Chapter 5, describes the functions for the
physical agents of the different MAS2TERING use cases and provides their objectives and
constraints; Chapter 6 maps each agent type and behaviour to the use case in which it will be
instantiated; and finally, Chapter 7 concludes the document and briefly describes the upcoming
deliverables related to it. This deliverable is also accompanied by the software implementation of the
defined extensions of the components.

Deliverable D3.1 18 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

Mas’ter|ng

2 Background

This chapter briefly describes the context from which our specifications have been drawn. We first
summarise the agents types identified using the USEF framework (extensively described in deliverable
D1.6) and then, we briefly describe the use cases that will be developed in WP6, and where the agents
will be validated.

2.1 Agent types and roles based on USEF framework

As described in deliverable D1.6, MAS2TERING aligns with the USEF framework. USEF delivers a
common standard for flexibility market solution by defining the different stakeholders and their roles
and responsibilities. Furthermore, it ensures that the value of flexibility can be maximised and
transferred. USEF proposes the aggregator as the centre of the flexibility value chain, whose services
are provided to the Prosumer, the Balance Responsible Party (BRP), The Distribution System
Operator (DSO), and the Transmission System Operator (TSO). In MAS2TERING, we focus on the
Prosumer, Aggregator, and the DSO, for which we only consider the role of congestion/capacity
management.

Following USEF’s specifications and the GAIA methodology, we have identified four agent types and
roles, namely: Device agent, CEMS agent, AGR agent, and DSO agent. Below we show a short
description of such agents with their associated roles, whereas further details are given in Chapter 4.

Agent type Roles
CEMS The Consumer Energy Management System (CEMS), monitors, controls and
- optimises the flexibility of the prosumer.

AGR The aggregator manages the flexibility produced by a portfolio of prosumers, and
tries to provide flexibility to other participants in the flexibility market. It is an
intermediate agent between the Prosumer and the DSO.

The Distribution System Operator (DSO) agent implements the functionality of grid
congestion/capacity management (Other DSO roles fall outside the scope of
MAS2TERING and will not be considered).

This class of agents represents the controllable and non-controllable energy-
consuming and/or producing systems in the grid. Some of them can be actively

controlled to provide flexibility.

Table 1 Agent types and their roles

Furthermore, based on the USEF framework and the value chain it proposes, the interactions between
agents have been also identified in D2.2. The following table shows for each agent the other agents it
communicates with. For instance, an AGR agent may communicate with another AGR agent, a CEMS
or a DSO agent. This model can be used for identifying potential communication bottlenecks that may
arise at runtime.

Deliverable D3.1 19 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

Agent CEMS AGR DSO Device
X X
N
X
x

Table 2 Communications between agents

2.2 MAS2TERING use cases

MAS2TERING relies on three use cases that will be implemented in WP6, to test the solution
developed in the project, and assess the achievement of its objectives. In the following, we briefly
describe each of the use cases.

The first use case (UC1), focuses on the Home Area Network (HAN) and the interaction with the end-
user. The main goal is to prove the interoperability between the HAN management system, the smart
meter and a technical interface (gateway), which allows the bi-directional communication between the
end user and the rest of the actors of the low voltage grid. MAS implementation at this level focuses
on two main agents, namely: Device agent and CEMS agent. The first one is in charge of the
controllable and non-controllable devices. The second one performs the in-home optimisation,
communicates with the AGR agent and also with the real devices to get their flexibilities and send
them the control signals.

The second use case (UC2) deals instead with the local management at the district level. The objective
is to demonstrate the effectiveness of balancing and optimising (without considering grid constraints),
at local community level, as an alternative to traditional centralised optimisation. This use case
receives as input the data coming from the UC1. The local community is considered as a collection of
consumption/generation nodes that are managed by a single entity, the aggregator. The AGR agent
enables the local flexibility market by negotiating with Prosumers (via their corresponding CEMS
agents) in their portfolio regarding the use of their flexibilities to collectively optimise energy flows
without considering grid constraints (i.e. the grid capacity/congestion management capacity of the
DSO does not form part of this use case).

The third use case (UC3) is an extension of UC2; it handles the entire low voltage grid as the union of
many local communities in a given area. This use case involves the DSOs, and intends to demonstrate
that the local optimisation enabled in UC2 may be a cost-effective way to deal with local congestions
and globally increase the grid performance, its reliability and resilience. The DSO agent is added to
MAS system for this use case. In case of expected congestion, the DSO agent initiates negotiations
with local AGR in the area to procure flexibility.

2.3 Methodology

One of the main results from WP2, and in particular in deliverable D2.2, is the decision of using
GAIA as a methodology for designing MAS2TERING agents and the use of Java Agent Development

Deliverable D3.1 20 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

A\
Mas’ter|ng s

* ok

* %

Framework (JADE), as a framework for implementing them. In this deliverable, we apply the
GAIA2JADE process to convert from the identified models into the real MAS implementation.

GAIA is a methodology for the analysis and the design of the multi-agent systems [2, 1], whereas
JADEZ is an open-source software platform developed by Telecom Italia Lab (TILAB) in Italy, and
distributed under the terms of the Lesser General Public License (LGPL). JADE is a middle-ware
(written entirely in the JAVA language), which simplifies the implementation of multi agents by
providing a set of graphical tools that support the debugging and deployment of agents. More
information on JADE can be found in [3].

Another advantage of combining the GAIA methodology and the JADE platform is the large amount
of research and work in the literature that focuses on mapping from one to another; i.e., there are few
works that studied how to translate the GAIA model to the JADE platform, in the so-called
GAIA2JADE process [1, 4]. This is achieved by specifically focusing on the JADE platform in the
design phase, whereas the designer can move straight forward towards the implementation, without
having to adapt the results of the design phase.

We follow the GAIA2JADE process for implementing the GAIA models, which are defined in D2.2
using the JADE framework that is chosen in MAS2TERING as underlying MAS platform. The
GAIA2JADE process aggregates four process packages. In this deliverable, we focus on the JADE
implementation process. This process involves the developer role and produces two products (i.e.
outputs of this deliverable), namely: the Java code and the repository of behaviours. Notice that JADE
behaviours are reusable pieces of code (components) that can be used for building agents or other
complex behaviours.

In the GAIA2JADE process, all the GAIA responsibilities (i.e. activities and protocols) that are
defined in the role model are transformed into MAS2TERING behaviours3. The transformation
process is as follows:

1. Define the behaviours corresponding to the activities field in the role model

2. Define the protocol behaviours corresponding to the protocols field in the roles model

3. Link the defined agents with their behaviours. For this purpose, the developer shall use the
setup method in the Agent class by invoking all the methods (GAIA activities) that are
executed only one time at the beginning of the top responsibility. It also initialises all agent
data structures and adds all behaviours of the lower level in the agent scheduler.

2 http://jade.tilab.com/

3 Activities and protocols can be translated to JADE behaviours, to action methods (which will be part of finite state machine
— FSM like behaviours) or to simple methods of behaviours.

Deliverable D3.1 21 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng

*Developer :
___________)D

~
FSMChildBehavior class _~” Define béhaviors

”~
'
~ |Behavior Name
e
o n -
m m_ < T
= |

g \ ~<
Interactidns Rolesl\odel ~\\\\\ i>
\ 3

Model \
\\ .
\ \ |
N \ Creatg FSMs
\
4] AN \ :
N \ \ v,
UML class N~ \ n
~ di N~ \
ACL \\\ lagrams \\ S~ { FalA
messages . \ \ e it
~ ~ \ \ = S l
~ \ \ - |
~ ~ \ 9
--------- R e s ittt
~ \
= ~ \ \
Activities refinement S \ \
\
table < e N Create oohstructors
N N ~ \\ \ \L
\N BehaviorName | ~ O \\ Behavior Name
-attribute1 i :
dribute2 -attribute 1
B N Ut il gt W T e
i) +Behavior Na
Behaviors Add behavior [+actent me() Define +Behavior Name()
behavior action

repository functipnality
I

e

Figure 3 GAIA2JADE definition of JADE behaviours and agents implementation process [1].

inputs, outputs

This deliverable defines the activities refinement table, including application-dependent data, their
structure and the algorithms that are going to be used by the agents are defined. Then, we define the
JADE behaviours and the agent classes following the corresponding GAIA2JADE process illustrated

in Figure 3.

Version 1.0

Deliverable D3.1 22
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

N\
Mas*tering i

* ok

* %

24 MAS platform

The MAS platform, which has been described in the deliverable D2.2, is extended to include the
MAS2TERING solution. In this chapter we give a brief description of the main components of the
platform and provide more details on the interfaces, classes and relationships that are specifically
developed to cope with the MAS2TERING project within each component.

The platform is built upon a component-based architecture to enable clear separation between the
different components; i.e., each one represents a reusable component that is composed of a collection
of conceptually related classes, which implement specific functionality and provide services to the
other ones. These components are illustrated in Figure 4 and are as follows: the user interface, the
Smart Grid model component, the agents’ model component, the constraints and objectives
component, communication protocols component, the security component, and a utility component.

[User Interface]

Smart Grid Model

Agents Model

Constraints + Communication s
Objectives] protocols Secu“ty
Utilities

Figure 4: MAS platform architecture

The following subsections briefly describe each of the components of the MAS platform architecture,
and focus on the components that have been extended to build the MAS2TERING multi-agent based
solution. These components are: the Smart Grid model component, the Agents model, and the
Constraints and Objectives component. The extension of the communication protocols is described in
D5.3 and implemented in D5.4, whereas the extension of the Security component is described in D4.2.

2.4.1 User interface

This component provides a graphical user interface (GUI) to show a 3D graphical and interactive
interface of the grid. It displays CityGML information in 3D, a 2D model of the grid, and real time
information from the agents, by means of a multilayer representation. A factory class is used to create
the entities that represent the components that are part of the grid, place them on the CityGML map,
and to connect them with their agents in the MAS model. Furthermore, it creates an information panel
for each of them in order to display the information and events on real time using user-friendly
reporting tools. Such tools allow colour-stated visualisation on a map of the entire network, including
some metric parameters for statistical and historical reporting.

2.4.2 Smart grid model

As described in D2.2, this component contains all the classes for defining the physical components
and characteristics of a power grid (The Smart Grid model) in the scope of the project and the

Deliverable D3.1 23 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

N\
Mas*tering £

ontology used for message exchange. Based on this component, the user is expected to define the grid
model by using the user-defined profile.

2.4.3 Agent model

This component implements the kernel of the platform, the distributed run-time environment that
supports the entire platform and its tools. Many of the functionalities of this layer will be relying on
the JADE framework. The view of agents in the MAS2TERING solution is based on following
definition:

An agent is an intelligent software component that exhibits the following properties:

* Autonomy: each agent is independent of other agents and has (some kind of) control over its
actions and internal state to achieve its individual goals without any direct intervention of
humans or others.

* Social ability: each agent interacts with other agents (including also humans and other third-
party software) via some kind of agent communication language in order to
negotiate/cooperate/compete to achieve its goals (i.e. goal-directed behaviours).

* Reactivity: agents perceive their environment and respond in a timely fashion to changes
occurring therein (i.e. an agent may be possible connected to hardware in order to implement
physical actions).

This particular view of agents is the only assumption for analysis, while the design is specific to the
JADE platform, which is a FIPA-compliant realisation of the above vision. To be able to realise that
vision, MAS2TERING uses a model for each agent that contains: its goals (via constraints and
objectives), its actions (via behaviours) and its interactions (via agent protocols).

DirectoryFadilitator | . -] AgentPlatform AgentFactory Message TrasportService

)
J
J

< CCreares> e cuses» 5

AgentServiceDescription | <<registers>»>_ _ | Agent

—] Behaviour

Figure 5 View of core classes of the MAS level

As described in deliverable D2.2, in the core of the MAS component, there is the agent class defined
by the JADE framework. An agent is viewed here as a thread associated to a mailbox that you want to
enhance with behaviours. A behaviour can be viewed as a method which defines when it should be
executed, take the state of the agent as argument, execute some actions and return whether it should be
kept running or being stopped (c.f. Behaviours section). When assigned to the agent, the behaviours
will have access to certain functionalities of the agent that owns them. Those reflective functionalities
include identifying the agent, sending messages and parsing the mailbox.

Deliverable D3.1 24 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

AN\
Mas’ter|ne %

* ok

* %

By using the static methods of the ‘AgentFactory’, it is possible to build a JADE Agent from an
AgentSpecification that contains the set of behaviours that the agent will include. The factory allows
starting JADE and launching a MAS system from the Collection of AgentSpecifications objects (c.f.
Figure 5).

2.4.4 Constraints and objectives

This component includes the necessary classes for modelling the constraints used to define the
restrictions of a grid component, of agents, and of their objectives. Each agent needs a way to
represent its goals, which are based on its individual interests (e.g. balance for distribution operators;
reduction of generation price for producers; reduction of consumption and comfort maximisation for
consumers, etc.).

2.4.5 Communication and Protocols

This package contains all the classes that provide support for implementing standard interaction
protocols in MAS2TERING. With exception of some functionalities for which an agent will not
require communication with other agents (i.e., the so-called agent activities in the GAIA role model),
the rest of agent’s behaviours will be implemented as a part of a multi-agent interaction protocol.
Examples of protocols are auctions, subscriptions to receive notifications, negotiations and a large etc.

JADE defines some basic protocols. However, MAS2TERING will need to enhance existing protocols
and create new ones to be able to fulfil the projects requirements. In this section we describe the main
building blocks necessary to define such protocols, whereas the particular definition of the protocols
for MAS2TERING shall be defined in the deliverable D5.3 and implemented in the deliverable D5.4.

When participating in a conversation driven by an interaction protocol, an agent can play either the
initiator or the responder role. Consequently, classes in this package are divided into initiators and
responders. For instance, following a protocol of subscription we have the Subscriptionlnitiator and
the SubscriptionResponder and so on. Playing a role in a conversation, no matter if it is the initator or
responder role, implies executing a task of some sort and thus all protocol classes (both initiators and
responders) are behaviours. Both protocol classes are implemented as subclasses of FMS-Behaviour
and each callback method is invoked in a dedicated state of finite state machine. This implies that an
agent that is going to execute some protocol (as for example the DistrictManagement agent) will
contain the FlexibilityNegotiationInitiator as part of its behaviours.

Complex multi-agent interaction protocols can be built with nested protocols. For each protocol we
may need to define a set of specific messages that relate to this protocol, the protocol may be
associated to a particular ontology and a particular language. This package will be extended in
deliverable D5.4, based on the communication specification in deliverable D5.3.

2.4.6 Security component

This component includes the classes necessary for authentication of the agents in the MAS platform,
and the message encryption, necessary for the communication between the agents. The contents of this
component are briefly described in D2.2, and are defined in more details in deliverable D4.2.

Deliverable D3.1 25 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering £

2.4.7 Utilities component

The utility and services classes that can be used by the other components are included in these
components. It is composed of four sub-components, namely: the connecters that include connectors
for different toolkits and simulations tools; the loggers that includes the classes necessary for event
registration, by means of loggers; the information fusion subcomponent that deals with different data
models and allow merging and wrapping data; and the utils, that includes utilities such as file readers
and some statistical utilities.

Deliverable D3.1 26 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

* % %
* 4 %

1Y
~ N
‘ ‘ \\W

Mas’ter

* e *

3 Smart Grid Model

As described in D2.2, this component contains all the classes for defining the physical components
and characteristics of a power grid (The Smart Grid model) in the scope of the project and the
ontology used for message exchange. Based on this component, the user is expected to define the grid
model by using the user-defined profile. For this deliverable, we have extended this component by
defining the MAS2TERING data model that defines the common expression of information exchange
between MAS2TERING agents in the different use cases and the Demand Side Management. This
data model follows the elicitation of the domain knowledge through each use case, and it is aligned
with relevant standards (in particular with FIPA-ACL, Energy@Home, CIM, IEC 61968 and
OpenADR).

A common data model is required in MAS2TERING for the common expression of information
exchange between participating entities. Instead of multiple ad-hoc mapping and conversion processes
between arbitrary models, participants will either use the common model internally or map their
internal model to a common schema. The common ontology will be used for formulating messaging
data structures for syntactical and implied semantic compatibility between entities for the support of
upper business processes. The common schema will use constructs from current standards. Three
primary standards have been identified for their usage, with varying relevance across the use cases,
namely: the IEC 61970 standard for modelling the electrical domain, the OpenADR standard for
modelling demand response within the Smart Grid, and the Energy@Home standard for domestic
conceptual modelling.

Due to the predominance of multi agents in the MAS2TERING platform, the primary usage of the
data model is to formulate the contents for those messages, independent of the protocols. As such, the
conceptual modelling will result in an ontology suitable for use within JADE. This will extend JADE’s
Base Ontology Java class to formalise a vocabulary, as well as descriptions of the concepts, predicates,
agent actions, and data slots relevant to the domain. In addition, schemas will form the ontology
metadata attributes of those messages, and the schemas will be generated from defined custom
contexts applied to the base models. Both extending JADE’s Base Ontology and defining and
registering the schemas can be achieved by using JADE BeanOntology, assuming that concept,
predicate and agent action beans have been produced first.

High level descriptions of the main constituent standards used are outlined below together with a
description of their scopes, followed by a simple methodology used to derive the implementation
artefacts, the results of the use case based elicitation, the resultant ontology, and its alignment with the
relevant standards.

3.1 The CIM

The Common Information Model (CIM) consists of three-layered parts published as a reference model
by the working group TC57, which is in turn based on the United Nations electronic exchange
standards. At the Smart Grid component, there is the UML class model capturing entities and their
attributes and relationships between entities, including specialisation and association, together with
further constraints such as cardinality in associations. The domain described by the model is wide such
that is able to support a diverse range of systems and processes including network management,

Deliverable D3.1 27 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

m * X %
Mas’ter|ng

outage management, work management, compliance checking, asset management, business process,
customer information, risk analysis, planning activities among others. The standard therefore models
entities such as electrical infrastructures, topology, power grid assets / equipment, geo-spatial / GIS,
facility management, cross-cutting those areas with support for engineering, operations, maintenance,
quality and operations for a range of stakeholders.

The upper layer information model of CIM is composed of four parts, developed by working groups
WG13 (IEC 61970) and WG16 extension, WG14 (IEC 61968) and WG15 (c.f. Figure 6). WG13
contains the model common core and other central packages including those called wires and topology
describing the connection of the grid infrastructure, its assets, and measurement and generation
concepts. It is extended in WG16 by describing marketing aspects and including support for bidding
and security constraints. Figure 4 shows WG14, which covers the functional and operational activities.
WGI15 contains business oriented models covering market operations, energy scheduling, financial
Interests.

Regarding interfaces, IEC61970 part 4xx is a series of Component Interface Standards (CIS). The CIS
is a functional specification that applications should implement in order to comply with standard
messages exchange. A further related standard is part 5, which specifics message realisation while
additionally IEC 61968-1 describes an interface reference model (IRM). The scope of those message
exchange formulations is likely to cover FIPA-ACL message content in MAS2TERING but the extent

of stack layering that will be utilised form the standards is not yet clear.
K

Metering |
> Common |<- - - v E
A N Work | ?F
: Assets

PaymentMetering)
Assetinfo

Figure 6: Main WG14 / IEC 61968 CIM packages

The middle layer of the CIM defines the context and subsets of the base model that can be used for
message exchange. The profile instances define which parts are mandatory and which are optional,

Cuslomers s

\

and can specify constraints on the base information but cannot add to the information model (for that
purpose the base model has to be extended).

Finally, the lower part of the CIM is an implementation specification that defines the implementation
resources. For this work package, the implementation artefacts will contain the specifications for the
syntax and the serialisation for the contents (‘payload’) of the messages used in communications

Deliverable D3.1 28 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

AN\
Mas’ter|ng %

* ok

* %

between entities. Possible schemas to be used are the XML Schema (XMLS) and the RDF Schema
(RDFS). XMLS offers a simpler implementation, while RDFS gives the potential for a richer capture
of explicit semantics. RDFS introduces the constructs: resources, properties and relations as well as
namespaces and URIs etc. As well as the use of RDFS for custom implementation, models such as the
Web Ontology Language (OWL) could be used for which several reasoners and editing tools are
readily available. In addition to message contents schemas, overlapping with the other project work
packages, other schemas can be generated, such as the schemas for databases or internal agent models.
The transformation of the class models to payload or other contents is the main purpose of this layer
resulting in a ‘trimmed’ and modified class structure. Such transformation can involve the
modification of associations to aggregations and the removal of superclass definitions where that
information is known to participants.

The derivation of the profile is use-case driven, iterative and incremental as implied in the figure.
Typically, the process is driven by UML sequence diagrams generated from use cases, but essentially
anything that conveys the nature the interaction to be supported is adequate. That specification is the
elaborated and transformed as outlined above to generate a version controlled schema instance. As is
typical of iterative software development processes the profile generation methodology includes a
‘feedback’ loop and this is expected to be a central concern in MAS2TERING as exchange
requirements emerge during the project lifecycle.

3.2 The OpenADR

The OpenADR (Open Automated Demand Response) standard targets the interoperation and
automation of applications concerned with integrating consumer, supplier and aggregator demand and
response (of electrical energy supply) information in order to better manage the resources from several
perspectives including economy of cost and resources, business models, availability and other
concerns. Its coverage is as well as specifying a data model, describes the communication mechanisms
between the participating entities which are servers that publish information (referred to as Virtual Top
Node) and consumers that subscribe to information supplies (Virtual End Nodes). However, the data
model is independent of the transport specifications. The standard consists of a profile specification
and a schema. The data model described by OpenADR is the primary resources of interest to
MAS2TERING, primarily focusing on the schemas (although the security framework utilising Public
Key Infrastructure certificates may be of interest to other work packages). The model addresses energy
reduction and shifting strategies which is a central concern in the project. In particular, the
formalisations for the following, a subset of OASIS EI Version 1.0, are likely to be of interest:

market context

event descriptions

dynamic pricing

availability and related constraints
pricing strategies

opting in and out of schedules

A

The event model from the OASIS EI v1.0 standard corresponding to the OpenADR event schema is
illustrated in OpendADR 2.0a Profile Specification document.

Deliverable D3.1 29 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

Some automated support for MAS2TERING data model merging with the other UML data models
may be feasible using XSLT transformation scripts and an appropriate transformation engine.

33 Energy@Home data model

The Energy@Home data model specifies a representation model for home area networks, based on the
CIM approach (through its evolution into the SEP2 model), and it is broadly aligned with the
OpenADR schema. The specification includes the concepts regarding smart appliances, renewable
energy generation, smart meters and smart user interfaces. For this reason, the Energy@Home
specification is similar in scope to use case 1 of the MAS2TERING project. The data model describes
the device properties and the properties of the device functions that are used to provide the user
interfaces similar to the one shown in Figure 7.

€« WaShlng MaChlne | Programming

CYCLE: Cotton

X Duration 2:30 Green Score: @ @@ @ @
Cycle estimated cost: 0.31€
8 Temperature 90°C v
Consumption: 0.0 kWh
@ Spln 600 v Power: 0 W

Figure 7: Smart appliance user interface based on the Energy@Home model

As well as the ‘static parameters’ related to device properties, Energy@Home also formalises a
method of describing devices’ energy consumption profiles in terms of energy phases, modes, power
profiles and extended profiles. This is highly relevant to the MAS2TERING project, as permutations
of modes and profiles would facilitate the concept of flexibility by curtailing or deferring load. An
energy phase is the atomic component of an energy schedule; whereby a phase represents a sub
process performed by an appliance, such as a pre-wash cycle of a washing machine. A mode is then a
collection of phases, and represents one method of completing a function of an appliance, such as a
wash cycle with a set temperature, for a washing machine. A power profile is then a task that the
appliance performs, which can be accomplished through various modes. An extended power profile is
then a collection of power profiles, such as a wash-dry program for a washing machine. This is
presented visually in Figure 8.

Deliverable D3.1 30 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

Power Profile Number 2|
Power Profile ID 1
Mix enable TRUE
Alernative modes number 3
Min Power Profile Delay [min from prev end time] 0
Duration [min] {optional} 900
Mode 0 Mode 1 Mode 2
MODE ID 0 MODE ID 1 MODE ID 2
Repetition number 1] Repetition number 1] Repetition number 1]

Phases number 2| Phases number 2| Phases number 2|
EnergyPhaselD 1] EnergyPhaselD 1 EnergyPhaselD 1
MacroPhaselD MacroPhaselD MacroPhaselD)
Expected Duration [min] 15 Expected Duration [min] 30 Expected Duration [min] 25 ;'é
Energy [Wh] 300 Energy [Wh] 300 Energy [Wh] 300 g
Peak Power [W] 1200 Peak Power [W] 600 Peak Power [W] 720 " g

- Max overload pause [min] 10| Max overload pause [min] | 10 Max overload pause [min] 10f & &S
% Max delay [min] 5 Max delay [min] 5 Max delay [min] 5 §
£ Max ant. [min] 10f Phase 1{Max ant. [min] 10{ Phase 1{Max ant. [min] 10
EnergyPhaselD 2| EnergyPhaselD 2| EnergyPhaselD 2|
MacroPhaselD MacroPhaselD MacroPhaselD
Expected Duration [min] 45 Expected Duration [min] 45 Expected Duration [min] 45
Energy [Wh] 0 Energy [Wh] 0 Energy [Wh] 0
Peak Power [W] 0 Peak Power [W] 0 Peak Power [W] 0
~ Max overload pause [min] 0 Max overload pause [min] 0 Max overload pause [min] 0
§ Max delay [min] 5 Max delay [min] 5 Max delay [min] 5
£ Max ant. [min] 0! Phase 2{Max ant. [min] 0} Phase 2{Max ant. [min] 0
Power Profile ID 2|
Mix enable 2|
Alernative modes number TRUE
Min Power Profile Delay [min from prev end time] 0
Duration [min] {optional} 480
Mode 0 Mode 1
MODE ID [0) MODE ID 1]
Repetition number 1] Repetition number 1
Phases number 2| Phases number 2]
EnergyPhaselD 1) EnergyPhaselD 1]
MacroPhaselD MacroPhaselD)
Expected Duration [min] 15 Expected Duration [min] "‘é
Energy [Wh] 150 Energy [Wh] 80 g
Peak Power [W] 600 Peak Power [W] 600 " g
Max overload pause [min] 10| Max overload pause [min] | 10 3 &S
Max delay [min] 5 Max delay [min] 5 §°
Phase 1{Max ant. [min] 10| Phase 1{Max ant. [min] 10
EnergyPhaselD 2 EnergyPhaselD 2
MacroPhaselD MacroPhaselD
Expected Duration [min] 45 Expected Duration [min] 30
Energy [Wh] 0 Energy [Wh] 0
Peak Power [W] 0 Peak Power [W] 0
Max overload pause [min] 0 Max overload pause [min] 0
Max delay [min] 5 Max delay [min] 5
Phase 2}{Max ant. [min] 0| Phase 2{Max ant. [min] 0

Figure 8: Breakdown of energy profile objects and properties in the Energy@Home data model

As outlined, the CIM (and IEC 61968 CIM extension) will be the central resource extended in the
framework by other models. The layered structure is shown in Figure 9. The roles of the different

layers have been described above and the manifestation of the model and syntax layers is respectively
UML class model and XML Schema (XSD format). The context layer manifestation is again a UML
model but is the specification of a subset and in canonical form. Additional constraints may be

specified using UML constructs.

Deliverable D3.1
MAS2TERING Multi-agent systems holonic platform generic components

31

Version 1.0
May 2016

A
Mas’tering £

i

! 7inhrwoin_hr hancod
lightweight enhanced
messaging messaging

Figure 9: MAS2TERING model layers (based on Xtensible Solutions presentation)

In the scope of the base model formulation, when multiple models are integrated, inevitably, overlaps
are expected. Ideally, the development of a meta-model would address the formalisation and the
mapping of consistent theories and concepts but this is beyond the scope of this project. Instead, the
approach here will be the pruning of models in the profile and nomination of resources via multiple
name spaces and appropriate translation and mapping if necessary.

For the first iteration of a MAS2TERING data model the following domains have been identified for
inclusion:

1. Temporal model, time series

2. Load profile, load descriptions (optimisation and simulation), consumption profile,
aggregated profiles

3. Flexibility parameters, flexibility bid description

4. Device characteristics e.g. charge / discharge plan, device availability

5. Demand / response

However as previously described, the ontology model development process is iterative and will
evolve, driven by use cases so the conceptualisations and theories modelled, extending the domains
above.

Following a thorough analysis of the standards outlined previously, these were then federated
manually (and automatically where the normative file formats allowed) into ontological
representations using OWL constructs. Subsets of these ontologies were then aligned and extended to
fully model the MAS2TERING domain. The main areas of extension regarded optimisation, device
types and descriptions, demand response and load control. The results of this use case based elicitation
are presented in the following sections followed by the resultant ontology.

Deliverable D3.1 32 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

AN\
Mas’ter|ng s

* ok

* %

34 Use case based description logic elicitation

Based on the methodology’s use-case driven approach to elicit a lightweight ontology aligned with
existing standards, each use case was considered in turn, with concepts and relationships and
properties being elicited to satisfy its exchange requirements. These were then compared to existing
standards to determine potential alignments before formalising the MAS2TERING ontology. This
analysis is now briefly presented for each of the use cases defined in deliverable D6.1.

- Use Case | — Domestic demand optimisation

The primary existing standard relevant to this use case was the Energy@Home data model described
previously, as both Device and CEMS agents exchanging messages within the context of this use case
would be exchanging content regarding the HAN. The CIM specification and IEC 61968 formalize
schemas for the exchange of messages regarding the network, and contain few concepts relevant to the
HAN. Those concepts which they do model are aligned with in the OpenADR and Energy@Home
schemas, the latter of which is also broadly aligned with the former.

- Use Case 2 — Aggregation of Dwellings

Use case 2 aims to utilise the flexibility offered by consumers through possible deferment and
curtailment of loads at the multi-building level, by trading this flexibility with an aggregator agent.
The aggregator agent receives a P-plan from each CEMS and buys the required flexibility based on
user constraints. Aggregator agents are then able to trade flexibility between each other and relay these
requests to CEMS agents. Beyond the concepts modelled for use case 1 then, use case 2 requires the
modelling of multi-home concepts, and flexibility concepts, in a formal manner. This extends the
scope of the ontology to overlap more significantly with those of the OpenADR and CIM standards,
and so this overlap and resultant alignment will be relevant in use case 2.

- Use Case 3 - Coordination of aggregator agents

Use case 3 aims to reduce the number and impact of congestion points within a low voltage grid
through the introduction of the DSO and using the FIPA’s agent called Directory Facilitator (DF), in
which agents wishing to advertise their services register (also called yellow pages). These agents
exchange knowledge regarding the connections and congestion in the network with the aggregators,
who then trade flexibility in order to improve the efficiency and resilience of the grid. Beyond the
concepts modelled in use cases 1 and 2 then, use case 3 requires the modelling of connections and
congestion points, as well as DSOs and further modelling of flexibility. As the concept of flexibility is
central to the approach, a clear understanding of its definition and a thorough formalisation of its
nature is required. The following section therefore briefly presents the perspective utilised when
trading flexibility.

35 Domain perspective of energy flexibility

Load flexibility is here defined as a market commodity of utilised peak load reduction through
optional deferment and/or curtailment of consumer demand, expressed as a unit of energy. Deferment
is the shifting of a load to a time more favourable to the network operator, where the amount of

Deliverable D3.1 33 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering £

flexibility is equal to the amount of energy shifted. In this way, the extent of the shift is independent to
the flexibility, as the consumer sets a deadline for the task completion. This is represented in Figure 9
below, when Q,, is the total energy consumption of the task, Q; is the flexibility utilised, tO is the
earliest start time of the task, t, is the task completion deadline, and T,;, is the minimum amount of
time the task requires to be completed.

Qtot I Qf

LI 1 U
w<— Tmin =—l “‘I‘Ime nTlme

Figure 9 Ontological perspective of load deferment. Left - desired load, right - deferred load

Curtailment of load is then the supply of a quantity of energy over time which is less than the desired
quantity. The flexibility is then the difference between the desired quantity and the supplied quantity,
again expressed as an amount of energy. This is shown in Figure 9 and Figure 10, where to is the
earliest start time of the task, t1 is the non-negotiable deadline of the task, Qf is the amount of
flexibility utilised, and Py, is the minimum amount of energy to be supplied (such as when a heating
device must meet a minimum room temperature).

Qf

— — — — w—— Pmin

1 1
0 t1 Time

Figure 10 Domain perspective of load curtailment. Black profile - desired load, red line -
curtailed load

Based on the use case analyses and the definitions of flexibility presented, devices were then
categorised according to their likely flexibilities and types of variability. Of course, the actual
flexibility offered for any appliance will be decided by the consumer’s preferences, as well as the
appliance’s technological capabilities.

Table 3 Classifications of likely flexibilities of devices

Non-interruptible Interruptible Variable Profile

Curtailable N/A N/A Electric heater

Deliverable D3.1 34 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

Deferrable Washing machine Dishwasher PEV, electric oven, tumble
dryer, kettle

Freezer, fridge, lights N/A N/A

3.6 Candidate generic domain ontology - OWL constructs

Following the elicitation of domain knowledge through the use-case and the standards-analysis driven
process, the resultant knowledge was formalised in description logic using basic OWL constructs so as
to produce a candidate ontology, generic across potential implementations. This was conducted in the
Protégé software, and serves to produce an ontology with value outside of its MAS application, as it is
also suitable for web service deployment, or direct use in a C++ or Java program through a relevant
OWL library. This was then extended with more application-specific knowledge, which served to
couple the ontology closely with the agents and protocols described in this deliverable, and in D5.3.
The generic ontology is presented first using OWL constructs due to their likely familiarity to the
intended readership of ontological modellers, then the extended ontology is presented, including its
coupling with MAS2TERING protocols, and finally in the JADE format utilised in MAS2TERING.
Given the difference in nature between the data schemas which these standards present and that of a
JADE ontology, the federation and re-use approach adopted represents a best-case for future
compliance with existing standards if they are expressed normatively in an ontological format in the
future. Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15 present the main concepts and the
relationships formalised in the generic ontology, and the data properties of these concepts.

v--®Thing
V@ DomesticLoad ¥ ® InformationObject
CurtailableLoad IntervalBlock
V@ DeferrableLoad ¥ © SensorObservation
InterruptibleLoad MeterReading
UninterruptibleLoad Reading
VariableProfileLoad v @System X
FixedLoad AggregatedDwellings
. . DsSo
V@ EconomicObject Dweelli
" welling
\ Commodity \CEMS
Flexibility v SmartDevice
Power v © Appliance
v Market Dishwasher
FlexibilityMarket ElectricHeater
PowerMarket ElectricOven
v Tariff Freezer
FixedPowerTariff FridgeFreezer
FlexibilityTariff Hob
v--® EnergySchedulingObject Refridgerator
AvoidWindow TumbleDryer
CongestionPoint WasherDryer
. WashingMachine
CurveDatc?Pomt Battery
DPrognosis v ®DGUnIt
EnergyPhase DG_Solar
ExtendedPowerProfile DG Wind
GenerationProfile PEV
Mode Sensor
PowerProfile SmartMeter

Figure 11 Full generic OWL model class list

Deliverable D3.1 35 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Potgect
l.cmm I LB Svtmemon)
| O vt casrone
S - @ ot cea |
I cyeetere 4
! T ot e
|
(8 Eeapnme] ® Lo wa
S S T
a] Lot
e Gy Tase "\‘,\
festowe rete R et
® Urnwterupite
o SES =

Figure 12 OWL MVD focusing on energy scheduling concepts

i it

Figure 13 OWL MVD focusing on device concepts

| Lecomname | - (Sumn] - [rmmme]

@ FlexbdityTan

t ® FixedPowerTand . 2"‘"“"

Figure 14 OWL MVD focussing on economic concepts

Deliverable D3.1 36 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

2 ‘ () ‘ * X A
* *
Mas’ter|ne Lo
* *
* 5 Kk
Data Froperty Furc Doran Farge
¥ mtopDataProperty
= hasSupplyUnitPrice v FuadPowe Tt foat
= hasMaxOverloadPause v Erwe gyPhane L]
= hasTotalEnergyDemand v Defor stiel on3 fest
® hasDemandUnitPrice v FusdPower Tanf? feat
= hasActivePower v CurveDatsbort foat
® hasDuration v Energy¥hase EnensedPonetroie Mode Powerrotie float
= hasHeatingSetPoint v ElectrcHester ccat
= hasTimeStamp v SermarObservation CurveOsaPort wng
= hasMaxDischargeRate v Partery foat
= hasMaxChargeRate v Battery flost
= hasSequenceOrder v Erergythase Powerrotie L
= hasMaxDelay v Erer gyFhase foat
= hasPeskPower v Lrer g/Fhase ot
= PenaltyParameter v Crurtsdatie, 0nd (=]
¥ = AppliancelD v Agpharce wry
= CompanyName
= ProductRevision
= ProductTypeName
= Model
= ProductTypelD
= CompanylD
= BrandiD
= SoftwareRevision
= PartNumber
= hastxecutionDeadline v Defertabin0ns =g
® hasMinDuration v Deferr stie_0ns foat
= hasBatteryCapacity v Oatery ot
= hasBatteryInitialCharge v Bantery ot
= hasMinPowerProfileDelay v Fometrem rapm
¥ mhasSeasorValue v SeraorOter v ston rout

3.7 Candidate protocol payload ontology — OWL constructs

= hasMetervValue

Figure 15 Generic OWL model data property specification

Following the process of formalising a generic domain ontology aligned with existing standards, this
was then extended to closely couple with the requirements of the MAS2TERING agents and protocols
specified. This involved formalising concepts, which would not themselves be included in message
payloads, but which would be necessary to contextualise the domain fully from the perspective of the
agents. Primarily, the agents themselves, as well as the message payloads, were described as classes
with required properties, resulting in 216 named concepts. This full class hierarchy is presented in
Figure 16 below, along with an example of the required property descriptions for the new classes.

Deliverable D3.1

37

MAS2TERING Multi-agent systems holonic platform generic components

Version 1.0
May 2016

A
Mas*tering {

L L] A saemioe | AN
=X] o
v Sihim T ErergrSchedubugPraces -
v Sagest o dgrflexiy ity Tradeg VA DT ATT) Ih 30 S0P DIIE I CEMBS 20 w0 | 900 IS Doy 3 Do Modl A0S | SV Wil S0 THS agerd
MY ® CernifleaiityTrodeg PG & PRy Mg PO 3 [0 300 CONPILECINE W 85 CEMEE 30 Aol 38 FT00 30 53000 3MT0E 10 BaLrce Dot Gleaal 383 bocal
O Dayhbesciarning tnam
Cemshgent ® nformatinaObject
Oencelgent AgeetDice ctory
@ Carectanyt echkater ageetsdearition
* DreAgent Lntervalbleck =
® Provaver T8 Semarchirvates
¥ ®Comewiciand ey on 4
® Curtalabbetond v S Mrapead =
» S Delerrablelsed # Rgureauian it @ tommmaveales Wb oot Ir 1 Dynkgent
O Flesdiand = lalc;'l"'-l“-"vml O ommemav e ey WHE wia | Cown hgendt
- :"‘::"u;"':: - © e e ale WD scone Aggrecalergest
® ComsrlenindtyPegaest g PVOEIRIwW Seme
® ComySabserption S RasAT e cxatly 1 AP
* Conpeithmvirsasren P - =
Drvice ControfCommand SUDIVISRI 5300 OFvesmeses
® Devicel beobiyUpdate OR:DsoPNEWIRSIY sate
o DFregnoiestipdne 5 Wtars semne
® DsoAprf lasbiStyksquest O RarrsDelbags <ou Drelie
® LasgTomCengeitionduly e J
O TaedPymverTaret © FPracLpdate OlaswsfPlen seme $Plen
O Pexib ity Tartt O ProceserCanasctiant kit D Maagent
¥ 8 EnergySchedubngObject v e pien @ rvcevedP aphond cave Fiten
* Atan o
® Congertisabein v S Oweltey ¢ Sumty 1
* CurvrDnaduim G PresanserDaebing ® ubicredTs came Comatgent
® DFragasies “re "
S beergrhace ©PraeserCavenaaty
T Eateede P s mvervrolie ¥ S SmariDevke
© Generatinarvatibe » % Assharce ¢ YWEh saly O} Y aditaer
® wie “Batery SRaAID sxactly 1 Ageatidestiier
© e s e (e teaindiy » S0GUE ° " Sunor
O Paaertrelie “Per = Vact
® FPlen ®Sesser ® recievedP aplond soly MaiPayised
T8 ThweWindess @ amarmieter @ requestiReghtratisamih o3 ace w1 acivarce
S Avei Mgy v 8 weaservice

- ® 1entP ayioad 1oty MaaPayleed

Figure 16: Full class list for MAS-coupled ontology, and example of class property specification

3.8 Candidate ontology - JADE constructs

In order to utilise the ontology to formalise the semantics of FIPA-ACL encoded payloads, the OWL
candidate ontology was converted into a set of JADE concepts and predicate bean classes. This
process has been automated by combining Apache Jena (to interpret the OWL file expressing the
candidate ontology) and Eclipse JDT (to manipulate Java source code). The JADE bean generation

process is detailed in MAS2TERING deliverable D5.3. Annex B.1 provides more information on the
conversion process.

3.9 Alignments with existing standards

Alignments with the existing standards have been formalised as OWL annotations, as presented in
Figure 17, Figure 18, and Figure 19 below. Whilst it would be incorrect to state that this represents full
compliance or alignment with the standard (as this would require further testing and refinement), it
demonstrates broad coherence with the domain perspectives of the existing standards, and paves the

way for genuine compliance if the existing standards are developed into full semantic models in the
future.

Deliverable D3.1 38 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

¥ 98 Dwelling
mODwahing 3gnadWeh61968-9 “UsagePort

¥ O FixedPowerTariff
mFadPowarTart? JMgnedwith61968-9 ' Tare”

¥ O HEMS
WHEMS algnadwith61968-9 "LoadControlDevice”
®HEMS alignedWith61968.9 'Headsnd'
WHEMS algnadWith61968-5 ' PaANDevica”

¥ OintervalBlock
® IntervalBlock algnadwitht1968-5 “IntervalBlock”

¥ 0 MeterReading
| MeterReadng algnadWith81568-5 ‘"MeterReading”

¥ O Reading
®mReading alignedWith61968.9 ‘Reading

¥ 0 SmeartDevice
= SmartDevice alignedWith61958-9 “EncDavice

¥ 0 SmartMeter
m SmartMatar AgnedWith51968-9 Mater”

¥ O Tariff
mTarl? Agnadwith61968-9 PricngStructura”

Figure 17 Alignment of ontological concepts with IEC 61968-9

-

@ AggregatedDwellings
®aggregatedDwelings algnedWithCIM "LoadGrou”
®aggregaadDwelings algnedWithCIM “Controldras”

¥ 906_Wind
®DG_Wind algnadWithCIM “windGanaratinglint”

¥ S DGUnit
®mDGUNt gNadWERNCIN “Gensratingune’

-

#0500
®DS0 agnedWrhCIN “Controlarea

¥ ® Dweelling
®Dweling dignedWikhCIN “Cortrolares

-

= hasLimit
®hasUimit ahgnedWithCIM “Lime”

¥ mbasReadingValue
mhasRaadngvalse FgNadWEhCIM "MaasuremantValye”

-

= hasSetPoint
mhasSatPort hgnadWithCIM “Ssthont”

¥ SICEMS
wmCEMS agnedWrhCIN “EnergyConsumar

¥ & Sensor
= Sensor algnedWithCIM “'Sersor

¥ 8 SensorObservation
W SansorObservation SigradWthCIM "Messuramant”

Figure 18 Alignment of ontological concepts with CIM

Deliverable D3.1 39 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

V@ Appliance
m Appliance alignedwithEatH "Appliance”

Y @ CurveDataPoint
® CurveDataPoint alignedwithEatH "CurveData”

v QEnergvPhase
i ®mEnergyPhase alignedwWithEatH "EnergyPhase"

¥ @ ExtendedPowerProfile
H mExtendedPowerProfile alignedwWithEatH "ExtendedPowerProfile”

V--@ MeterReading
i ®@ MeterReading alignedwithEatH "MeterReading”

Y @ Mode
®Mode alignedwWithEatH "Mode”

Y @ PowerProfile
mPowerProfile alignedwithEatH "PowerProfile”

v ,SmartDevice
®mSmartDevice alignedwithEatH "EndDevice”

Figure 19 Alignment of ontological concepts with Energy@Home

Deliverable D3.1 40 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

A
Mas*tering

* % %

* oy k

4 The Agents model

The MAS2TERING platform will perform as follows: (1) the aggregation of atomic ‘Behaviours’ into
the AgentSpecification, (2) using the factory to build the final JADE agent from the Agent
specifications, and (3) Launching the JADE Agents objects within the platform with the Factory.

The agent model is extended by modelling the specific requirements extracted from both: the USEF
framework and the use cases. We start by defining the types of agents and their roles that will be
defined in the management system. The description tables of the four types of agents and the seven
subtypes, which will be used for testing the three use cases, are presented following this template:

Agent class Agent type name as specified in D2.2

Subtype Agent subtypes (if any)

Description Textual description of the role that the agent plays

Finite State A high-level visual representation of the behaviour of the agent is
Machine (FSM) represented using a Finite State Machine. Figure 20 shows a legend for the

created Finite State Machines. More details about how to read and
understand FSMs is provided in Annex A.1.

. Initial State
@ Final state

A ———> B MOVES FROM BEHAVIOUR A TO BEHAVIOUR B

B FORK (PARALLEL TRANSITION)

Cyclic
(repeated
forever)

Custom
behaviour

Figure 20: Overview of the FSM components and used syntaxes

Table 4 Agent type description template
In the following tables, we provide the description of each of the agent types and subtypes.

4.1.1 Distribution System Operator (DSO) Agent
Agent class name | Distribution System Operator (DSO)
Subtypes --
Description The DSO is responsible of the cost-effective distribution of electricity to end
Deliverable D3.1 41 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

consumers within statutory limits for the region of the distribution grid for
which it is responsible (See D1.6). However, due to simplicity purposes, the
DSO agent of the designed MAS system for MAS2TERING will only
provide the functionality for managing the grid congestion.

During the planning phase the DSO will publish the locations in the grid
where overload may occur (i.e. based on its analysis of the trends in energy
flows in its grids). After this, the DSO mainly participates in the validate
phase, in which it takes place the alignment Aggregator/DSO. In more detail,
the DSO whether the demand and supply of energy can be distributed safely
without any limitations based on the received D-prognoses from AGRs. If
congestion is expected to occur, the DSO procures flexibility from AGRs to
solve the grid capacity issues.

The following FSMs show: a high-level FSM (DSOBehaviour), which is
composed of the lower-level FSMs illustrated (DSO Plan, DSO Validate, and

DSO Operate).
Finite State DSOBehavi .
. ehaviour
Machine
DSO Plan
FAILED_SOLVING CONGESTION § DSO Validate
™ e —
NO_CONGESTION CONGESTION DETECTED
_EXPECTED _ON_DPEN_PTU
!
DSO Operate
if CONGESTION_DETECTED_ON_CLOSED_PTU
ORANGE_REGIME
(out of MAS2TERING)
Deliverable D3.1 42 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

2 “ ° ‘i * X %
*
Mas*tering :
*
* 4 *
DSO Plan
Register Long
Term Congestion
Points
Quary Active
Aggregators
Forecast Non
Aggregator
Connections
, DSO Validate
SENT_FLEX_ORDERS
Recelve
DPrognoses
GATE_CLOSED
ALL_DPRGGNOSES_RECEIVED Flexibility
Trading
AGRDSO
Grid CONGESTION_EXPECTED
Safety
Ana
FAILED_SOLVING_CONGESTION
NO_CONGESTION_EXPECTED or GATE_CLOSED
DSO Operate
CONGESTION_OfTECTED _ CONGESTION_DETECTED_
ON_OPEN_PTU O _CLOSED PTU
Deliverable D3.1 43 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components

May 2016

A
Mas’ter|ng £

4.1.2 Aggregator Agent

Agent class name | Aggregator (AGR)
Subtypes --

Description The role of the aggregator is to manage the flexibility produced by a portfolio
of prosumers. Aggregators compete to each other to provide flexibility to
other participants in the flexibility market (i.e. DSO, other aggregators) (see
D1.6). To do this, the aggregator participates in the following phases:

Plan: The plan phase starts when the aggregator collects P-plans from the
prosumers it is representing. Then, the aggregator optimises its portfolio
based on its client needs and provides an A-plan which is the expected
consumption profile during the day of delivery of the portfolio of prosumers
of the aggregator.

Validate: The aggregator sends/updates a D-prognoses per congestion point
to the DSO. The aggregator handles flexibility requests from the DSO
entering into negotiations to provide flexibility from its portfolio.

Operate: The aggregator adheres to its D-prognoses and A-plans. To do this,
the aggregator needs to monitor the P-plans of their prosumers, and if any
change in the forecast is detected, it has to process the corresponding affected
plans.

In the following, a high-level FSM shows the aggregator phases (AGR high
level FSM). Each hierarchical FSM is then illustrated (AGR plan FSM, AGR
Validate FSM, and AGR Operate FSM) .

Finite State .
. AGR high level
Machine ?

OPERATE_TIME
—— AGR Plan <

VALIDATE_D_PROGNOSIS

v

" NEW FLEX ORDER
AGR Validate » = =

OPERATE_TIME [

v

MONITORED CHANGES ON OPEN _PTU
AGR Operate -

I MONITORED_CHANGES _ON_CLOSED_PTU

®

OUT_OF _MAS2TERING

Deliverable D3.1 44 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

NEW _FLEX OFFER (ancther AGR)

Wait for Operate Time, Flax
Offer or Require D-
Prognosis message

VALIDATE_O
PROGNOSIS

o

AGR Plan
[L)
/ - I = & =
- i
Register 1 (AGR Monitoring
Connections : < and Optimization -
1 —
! OPERATE | VALIDATE_D
| TME _PROGNOSIS
Query :
Congestion '
Points |
1
1
1
1
Retrieve :
Active AGRs |
]
|}
\ 1] /
A
AGR Menitoringand

Optimization

Subscribe
P-Flans

NEW_FLEX_ORDER (ancther AGR)

Deliverable D3.1 45
MAS2TERING Multi-agent systems holonic platform generic components

Version 1.0
May 2016

Mas*tering

. AGR Validate AGR Operate

Identify Changes In
D-Prognoses

Receive
PPlan
Updates

NO_DEVIATION

Detect
Deviations

Trade Flexibility For
Geid Capacity
Management

MONITORED_CHANGES
ON_CLOSED_PT

MONITORED_CHANGES
DN_OPEN_PTU

OPERATE_TIME NEW_FLEX_ORDER

4.1.3 Consumer Energy Management System (CEMS)

Agent class Consumer Energy Management System (CEMS)
name

Subtypes --

Description | The CEMS controls and optimises the flexibility of the prosumer. It aims at
minimising the corresponding prosumer energy bill (i.e. it carries out an internal
optimisation behind the meter). To do this, the CEMS has access to all the devices
of the corresponding prosumer as well as to the tariff that the prosumer contracted
with the supplier. The outcome of this is twofold: the configuration of the
controllable devices and the prosumer energy consumption plan (the P-plan). The
in-home optimiser can minimise the bill by using flexibilities to perform TOU
optimisation, controlling the maximum load or apply a self-balancing.

In case that the prosumer subscribes to an AGR, the CEMS serves as a first
aggregation level being in charge of communicating the P-plan to the AGR and
handle messages of offers for flexibility from the AGR in order to consider them in
the in-home optimisation when updating P-plans. A CEMS is a logical entity and
not necessarily a physical device.

The CEMS is also in charge of realising the agreed P-plan when entering the
corresponding Operate phase by sending the corresponding control signals to the in-

home controllable devices (i.e. executing all the corresponding flexibility orders).

Deliverable D3.1 46 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

‘mi * X %
e
: »
* g K
Finite State
Machine ,
‘ CEMS Behaviour
P E & E ! E \\“;i E" e ¢
R e i Y
S st - -._'m"ﬂ"f E I“«Nr:) E NG : - \Cnv;:.:’u-og,
L) |)
Manage New
ibiliti
Manage Pplan Flexibilities
Communication
Flexibilities
Serve
Subscribe Recelve
P-Plan Flexibilities
In Home
Optimizer ;:,(H,,:':,
Manage Monitor & Report
Devices Consumption
Receive
Realize P- Device
Plan Consumption
Inform Wamn If
Control Deviation
Signals
Figure 21. FSM CEMS agent
4.1.4 Device Agent
Agent class Device
name
Subtypes Curtailable Load, Deferrable Load, Fixed Load, Generator, Transmission Line,
Battery, External Tie
Deliverable D3.1 47 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components

May 2016

A
Mas*tering

* % %

Description

It represents the energy-consuming and/or producing/storage end-systems that can
be actively controlled or not.

This agent defines a set of flexibilities by using its device model constraints, user
settings and the forecasts (when applicable).

Devices interact with CEMS to provide it their flexibilities.

Flexibility of a non-controllable device is assumed as a fixed power demand curve
subject to some constraints.

In case of self-controlled devices, the flexibility may be a flexible regime in which
the device can work, for instance to shift, increase or decrease their energy
consumption or production. They also present another interaction in which CEMS
sends the devices the control signals for setting up their actuators.

Finite State
Machine

Device

Y o~
FSM Receive
Forecast

—

Send Current

Realize Plan .
Consumption

£

*

2

.4

%
wawawendl

[PRSRpEp— 1
-

FSM Serve Subscribe
Flexibility

Realize Plan

Serve
Subscribe
Receive Flexibility
Control

Signals

Compute
Flexibility

Set
Actuator
Values

Publish
Flexibility

Deliverable D3.1

48 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components

* X %

* 5k

May 2016

A
Mas’ter|ng £

FSM Receive Forecast
Updates

. FSM Receive User
Settings

Subscribe
Foracast

Receive User
Settings

Receive
Forecast
Updates

Compute
Flexibility
Publish
Flexibility

Figure 22. FSM Device agent

Compute
Flexibility

Publish
Flexibility

The Device Agent is the only one that needs a more specific definition based on each kind of device.
Since it represents the physical devices of the power grid, each of them with its own specification and
constraints, several agents’ subtypes that extend the Device agent must be defined. We identified and
modelled one agent per physical device of the grid. More precisely, seven agents are needed for testing
the three use cases defined for MAS2TERING project. Figure 23 shows the UML diagram of these

agents:
Agent
+ setup() : void
+ toString() : String
DSOAgent AGRAgent CEMSAgent DeviceAgent
- dso : DSO - aggregator : AGR - cems : CEMS - device : Device
Generator DefferableLoad ExternalTie CurtailableLoad
FixedLoad TransmissionLine Storage

Figure 23 Agents hierarchy in JADE

Deliverable D3.1

49

MAS2TERING Multi-agent systems holonic platform generic components

Version 1.0
May 2016

* X %

A\
Mas’ter|ne C

* ok

* %

Next subsections provide a short definition for each of the subtypes of Device Agents that can be
extracted from the Smart Grid model defined for MAS2TERING project and that will be used in the
use cases. The constrains of each device subclass are described inside the constraints and objectives
component of the MAS platform (Chapter 5).

4.1.4.1 Generator

A generator is a single-terminal device that supplies power to the grid. It works with a power schedule
and generates power within a range and may have a limit for changing power levels from one period to
the next.

4.1.4.2 Curtailable Load

A curtailable load is a single-terminal device that has a desirable load provide and a real power load. It
penalises the energy shortfall between a desired load profile and the delivered power. Some device
extensions may include time-varying and nonlinear penalties on the energy shortfall.

4.1.4.3 Deferrable load

A deferrable load is a single terminal device that requires its execution to be done by a certain time
specified by the user. MAS2TERING defines different subtypes of deferrable loads depending on: (i)
if the corresponding appliance can be stopped once started; and (ii) the way that it is specified the
appliance power consumption profile (i.e. if it needs to match particular power consumption profile or
it just must consume a minimum amount of power over the given interval of time) .

4.1.4.4 Storage

A battery is a single terminal device with power schedule, which can take in or deliver energy,
depending on whether it is charging or discharging.

4.14.5 Fixed load

A fixed energy load is a single terminal device with zero cost function which consists of a desired
consumption profile that must be satisfied in each period. It does not provide any flexibility and
cannot be controlled.

4.1.4.6 External tie
An external tie is a single terminal device that represents a connection to an external source of power.
In MAS2TERING these external ties are used to represent the individual tariffs that each home owner

has with the utility. Such tariffs are represented as external ties since the price of energy is fixed for
the tariff contract and independent of the prices given to participate in the local flexibility market.

4.1.4.7 Transmission line

A transmission line is a device with two terminals (i.e. two power schedules) that transports power
across some distance. It works at the distribution level and may carry some energy losses.

Deliverable D3.1 50 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

4.1.5 Behaviours

In the following, we provide a list of behaviours that are used by the agents in this component of the
MAS platform. The behaviours are defined by extending the existing behaviours in JADE, which are
shown in Figure 24. The figure shows the main classes in the Behaviour package: each behaviour can
be viewed as a coherent, potentially complex ability that provides the agent with a certain functionality
(e.g. deliberating for solving a given type of problem, interacting with other agents using a given
protocol, using external application Matlab, etc.). As far as possible, a behaviour is defined relatively
independently of the other behaviours. If dependencies are needed, dependent behaviours are
preferably being related by a composite behaviour (e.g. first receive new flexibility, then perform local
optimization), by exchanging information through agent memory (e.g. compute a PPlan in a first
behaviour and then send it in another) and possibly by “causing” external influences (e.g. send request
for PPlan in a first behaviour and then receive incoming PPlans in a second) (complex behaviour).
Thus, each behaviour can be designed while requiring only a very limited understanding of the whole
application it may be used for. In addition to simplifying behaviour design, this last point makes
possible to reuse the same behaviour multiple times.

As we can see in Figure 24, there are two main types of behaviours: simple and composite. Those
behaviours take the same meaning as in JADE: a composite behaviour is a finite state machine in
which each state represents a micro-behaviour and a transition represents the flow of execution from
one micro-behaviour to the next.

pkg
Behaviour
| ']
SimpleBehaviour CompositeBehaviour
1
SequentialBehaviour FSMBehavi ParallelBehaviour

Figure 24: Main classes in the Behaviour package.

The MAS2TERING-specific behaviours are described following this template:

Table 5 Behaviours description template

Behaviour name Behaviour name (as specified in D2.2)
Behaviour type Type of JADE behaviour
Description Textual description of the behaviour

Inputs Inputs that the behaviour receives (from agent memory)
Outputs Outputs that the behaviour provide (influencing agent memory or the

Deliverable D3.1 51 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering £

execution of other behaviours connected by a composite behaviour)

In the following tables, we specify each of the identified behaviours for the four agent classes
described in the previous section. Given that no behaviour is used by multiple agents, we sorted these
behaviours by agents.

Some of these behaviours are “final/working” behaviours (describing actions for the agents) some
others are composite (describing a composition of behaviours) and some others are undefined (to be
defined at a later time of MAS2TERING.

4.1.5.1 DSO-Level Behaviours
0.
Behaviour | -
CompositeBehaviour] __
]
1 o
FSMBehaviour
| |
DSOBehaviour DSOOperate
- dsoPlanBeh : DSOPlan - monttorGridBeh : MonitorGrid
- dsoOperateBeh : DSOOperate
- dsoValldateBeh : DSOValdate
DSOPIan DSOValidate
- registerLong TermCongestionPointsBeh : RegisterLongTermCongestionPoints - receiveDPrognosesBeh : RecelveDPrognoses
- queryActiveAggregatorsBeh : QueryActiveAggregators -« computeMissingProgr Beh : ComputeMissingPrognoses
- forecastNonAggregatorConnectionsSeh : ForecastNonAggragatorConnections - grigSafetyAnalysisBeh : GridSafetyAnalysis
= flexibiity TradingAGRDSOBeh : Flexibiity TradingAGRDSO

Figure 25: DSO FSM behaviours UML diagram

Figure 25 illustrates a general view of the DSO behaviours that are explained in the following
subsections. The whole UML diagram for the DSO behaviours is included in the Annex of this
deliverable.

Behaviour name DSOBehaviour

Behaviour type FSMBehaviour

Description This behaviour combines the DSOPlan, DSOValidate and DSOOperate
phases.

Inputs ==

Outputs --/ ORANGE_REGIME (out of MAS2TERING scope)

4.1.5.1.1 DSO Plan

Behaviour name DSOPIlan

Behaviour type FSMBehaviour
Description This behaviour combines the working behaviours the DSO performs at
Plan time, as introduced in Section 4.1.1. This behaviour combines

Deliverable D3.1 52 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

Mas’tering £

RegisterLongTermCongestionPoints, QuaryActiveAggregators and
ForecastNonAggregatorConnections behaviours.

Ooupus |8

Behaviour name RegisterLongTermCongestionPoints

Behaviour type OneShotBehaviour

Description This behaviour publishes the Congestion Points to the Directory
Facilitator. This behaviour aims, in a longer term, at initiating a contact
procedure with active AGRs that are related to a congestion point (cf.
RegisterLongTermCongestionPoints in D5.3).

m Long-term congestion points
Outputs --

Behaviour name QueryActiveAggregators

Behaviour type OneShotBehaviour

Description This behaviour seeks the identity of AGRs that are connected to a long-
term congestion point as well as the long-term congestion points they are
related to. More details are provided in the
RegisterLongTermCongestionPoint protocol in D5.3.
TR -

Outputs Active aggregators and the long-term congestion points they are related to.

Behaviour name ForecastNonAggregatorConnections

Behaviour type OneShotBehaviour

Description This behaviour forecasts the energy consumption for the parts of the grid
that are related to a congestion point and not monitored by an AGR.

Grid model, active aggregators, their connections

Outputs Forecasted consumption plan for connections that are not monitored by an
AGR.

4.1.5.1.2 DSO Validate

Behaviour name DSOValidate

Behaviour type FSMBehaviour

Description This behaviour combines the working behaviours performed by the

DSOAgent at the Validate time, as introduced in Section 4.1.1. This
behaviour combines the ReceiveDPrognosis, ComputeMissingPrognoses,
GridSafetyAnalysis, FlexibilityTradingAGRDSO behaviours

Outputs --/NO_CONGESTION_EXPECTED,
FAILED_SOLVING_CONGESTION

Deliverable D3.1 53 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Behaviour name ReceiveDPrognoses

Behaviour type OneShotBehaviour

Description This behaviour receives expected D-Prognoses from AGRs and record
them. This behaviour stops either when all expected D-prognoses are
received or when the day-ahead gate closure has passed.

AGRs expected to send D-Prognoses.
This set encompasses AGRs that are related to a congestion point and for
which (1) no D-Prognosis is known or (2) updated D-Prognoses are
expected after having sent a FlexOrder.

Outputs Updated D-Prognoses/ALL_ DPROGNOSES RECEIVED,

Behaviour name ComputeMissingPrognoses

Behaviour type CustomBehaviour (to be implemented at a later time of the project)
Description This behaviour evaluates the consumption of the parts of the grid that are
monitored by an AGR but for which no D-prognoses have been provided.
Set of missing D-Prognoses, grid-model

Updated D-Prognoses (all D-Prognoses should be completed).

Behaviour name GridSafetyAnalysis

Behaviour type OneShotBehaviour

Description Analyses the grid configuration in order to detect any congestion at the
level of transformers or lines.

Grid model, D-Prognoses, consumption forecast of non-aggregator
connections

Outputs AGRs involved in congestion / CONGESTION EXPECTED,
NO_CONGESTION EXPECTED

Behaviour name FlexibilityTradingAGRDSO

Behaviour type CustomBehaviour (blank for now, to be implemented at a later time of the
project)

Description This behaviour initiates trading operations with AGRs in order to avoid
congestion.

Active AGRs, grid-model, D-prognoses, long-term congestion points
Outputs --/FAILED_SOLVING_CONGESTION, SENT FLEX ORDERS

4.1.5.1.3 DSO Operate

Behaviour name DSOOperate

Behaviour type FSMBehaviour

Deliverable D3.1 54 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Description This behaviour combines the working behaviours that the DSO has to
perform at the Operate time, as introduced in the DSO FSM. This
behaviour consists of the MonitorGrid behaviour.

Outputs --/CONGESTION DETECTED_ON_OPEN _PTU,
CONGESTION DETECTED_ON_CLOSED_PTU

Behaviour name MonitorGrid

Behaviour type OneShotBehaviour

Description This behaviour monitors the energy consumption in the grid and receives
new D-Prognoses. It stops when a new D-prognosis causes a congestion.
Grid model, D-prognoses, incoming D-Prognoses

Outputs --/CONGESTION EXPECTED ON _OPEN PTU,
CONGESTION_EXPECTED ON_CLOSED PTU

4.1.5.2 AGR-level behaviours

=

CompositeBeh o
I
a0

Figure 26 AGR FSM behaviours UML diagram

Figure 26 illustrates a general view of the AGR behaviours that are explained in the following
subsections. The whole UML diagram for the AGR behaviours is included in the Annex of this
deliverable.

Deliverable D3.1 55 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering o

4.1.5.2.1 AGR Plan

Behaviour name AGRPIlan

Behaviour type FSMBehaviour

Description This behaviour combines the RegisterConnections,
QueryCongestionPoints and RetrieveActiveAGRs and
AGRMonitoringAndOptimization according to Section 4.1.2..
s 8

--/ out of MAS2TERING

Behaviour name RegisterConnections

Behaviour type OneShotBehaviour

Description This behaviour sends to the DF the connections (the parts of the grid) in
which the agent has active prosumers. See protocol RegisterConnections
in D5.3.

m Connections, grid-model
-

Behaviour name QueryCongestionPoints

Behaviour type OneShotBehaviour

Description Requests from the DF the set of congestion points and related DSO to
which the agent is related to. See QueryCongestionPoints in D5.3.

Outputs Congestion-points related to the agent

Behaviour name RetrieveActiveAGRs
Behaviour type OneShotBehaviour

Requests the set of active AGRs from the DF.

Outputs Set of active AGRs

4.1.5.2.1.1. AGR Monitoring and Optimization

Behaviour name AGRMonitoringAndOptimization
Behaviour type FSMBehaviour

Description This behaviour combines the SubscribePPlans, ReceivePPlans,
OptimizelnternalPortfolio, TradeFlexibilityForPortfolioOptimization,
WaitForOperateFlexOfferOrDPrognosis, as depicted in the FSMs
illustrated in Section 4.1.2.

s

OPERATE_TIME, VALIDATE_D_PROGNOSIS

Deliverable D3.1 56 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Behaviour name SubscribePPlans

Behaviour type OneShotBehaviour

Description The AGR agent requests PPlans from the set of CEMS agents monitored
by the AGR. See the SubscribePPlans protocol in D5.3.

Monitored CEMSs

Outputs --

Behaviour name ReceivePPlans

Behaviour type OneShotBehaviour

Description Wait and receives PPlans until having received all CEMS that are
expected to send PPlans have done so. See SubscribePPlans protocol in
D5.3.

m CEMSs expected to submit PPlans, new PPlan updates
Updated PPlans

Behaviour name OptimizelnternalPortfolio

Behaviour type CustomBehaviour

Description This behaviour internally optimizes the portfolio of CEMS agents (e.g.
opening the local flexibility market, providing FlexOffers to CEMS). See
protocol OptimizelnternalPortfolio in D5.3 for more.

m To be defined in D3.2/D3.3
To be defined in D3.2/D3.3, updated Aplan

Behaviour name TradeFlexibilityForPortfolioOptimization
Behaviour type CustomBehaviour

Description This behaviour performs AGR-to-AGR interactions in order to optimize
costs by selling flexibility
T "o be defined in D3.2/D3.3

Outputs To be defined in D3.2/D3.3 / NEW_FLEX ORDER (arising from another
AGR), NO_OFFER

Behaviour name WaitForOperateFlexOfferOrRequiredDPrognosis

Behaviour type OneShotBehaviour

Description This behaviour waits for either incoming messages from an external actor
(a flex offer from another AGR or a DPrognosis from a DSO) or for
operate time.

Note: counter-intuitively but according to the USEF framework, AGRs do
not react to PPlans at this time. Reacting to PPlan updates is done only
after the operate phase.

NEW_FLEX_ OFFER, OPERATE TIME, VALIDATE D_PROGNOSIS

Deliverable D3.1 57 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

4.1.5.2.2 AGR Validate

Behaviour name AGRValidate

Behaviour type FSMBehaviour

Description Combines the behaviours to be performed during the validation phase for
the AGR. These behaviours are: IdentifyChangesInDPrognoses,
InformDPrognoses and TradeFlexibilityForGridCapacityManagement.

Outputs OPERATE_TIME, NEW FLEX ORDER

Behaviour name IdentifyChangesInDPrognoses

Behaviour type OneShotBehaviour

Description This behaviour compares the former D-Prognoses with the new one and
evaluates the presence of D-prognosis modifications (i.e. whether the
consumption related to a congestion point has changed)

m Aplan, Congestion points
Updated D-prognoses

Behaviour name InformDPrognosis

Behaviour type OneShotBehaviour

Description This behaviour creates a D-Prognosis per congestion point based on the
current Aplan and sends it to the DSO.

Congestion points, D-prognoses

Outputs --

Behaviour name TradeFlexibilityForGridCapacityManagement

Behaviour type CustomBehaviour

Description This behaviour handles the flexibility trading between the AGR and the
DSO in order to avoid congestion points.

To be defined in D3.2 and D3.3

Outputs To be defined in D3.2 and D3.3. OPERATE TIME or

NEW_FLEX ORDER

4.1.5.2.3 AGR Operate

Behaviour name AGROperate
FSMBehaviour

Description Combines the behaviours to be performed during the operate phase for the
AGR. These behaviours are: ReceivePPlanUpdates and DetectDeviations
as detailed in the FSM figure in Section 4.1.2.

Deliverable D3.1 58 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

Mas’tering o

Outputs MONITORED CHANGES ON_OPEN _PTU,
MONITORED CHANGES ON_CLOSED_PTU
(NO_DEVIATION : stay in this phase)

Behaviour name ReceivePPlanUpdates

Behaviour type OneShotBehaviour
Description This behaviour waits for new PPlan updates to be received

Outputs New PPlan Updates

Behaviour name DetectDeviations

Behaviour type OneShotBehaviour

Description Checks whether PPlan updates caused deviations in APlan and D-
prognoses

New PPlan Updates, PPlan, DPrognoses

Outputs NO_DEVIATION, MONITORED CHANGES ON_OPEN PTU,
MONITORED CHANGES ON_CLOSED_PTU

Behaviour name AGRBehaviour

Behaviour type FSMBehaviour

Description This behaviour combines the AGRPlan, AGRValidate and AGROperate
phases according to Section 4.1.2.

Outputs -/ (out of MAS2TERING)

Deliverable D3.1 59 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

4.1.5.3 CEMS-level behaviours

CompositeBehaviour] .

T

FSMBehaviour

o &

— - manageDevicesBeh : ManageDevices ManageNewFlexibilities

Bawgelievioes T e - recenaFlaxibiitiesBeh - RecetveF lexibities
- optimizeintemsiPortfolioBeh : OpsmizeirternalPortfolio):

» -M:w«mam WW

- InformCartrolSignalsBeh : informContralSignals ||| _ yioniorandReportConsumptionBeh : MonitorAndReperiConsumpticn | | [- PuSishePlanBeh -

MonitorAndReportConsumption ManagePPlanCommunication
- receiveDeviceConsumptionBeh - RecsiveDeviceConsumplion - serveSubscribePPlanBeh | ServeSubscribePPlan
- warnfDevialionBeh | WamifDevistion - InHomeOplimiserBeh - InHomeOptimiser

Figure 27: CEMS FSM behaviours UML diagram

Figure 27 illustrates a general view of the CEMS behaviours that are explained in the following
subsections. The whole UML diagram for the CEMS behaviours is included in the Annex of this
deliverable

Behaviour name CEMS Behaviour

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours of the CEMS agent:
ManagePPlanCommunication, ManageNewFlexibilities,
OptimizelnternalPortfolio, ManageDevices and
MonitorAndReportConsumption, as described in Figure []
TR -

-

Behaviour name ManagePPlanCommunication

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours of the CEMS agent related to the
management of requests for communicating PPlans. Combined behaviours
are SeverSubscribePPlans, InHomeOptimizer and PublishPPlan, as
described in the FSM figures in Section 4.1.3

TR -

-

Behaviour name ServeSubscribePPlan

Deliverable D3.1 60 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering o

Behaviour type CustomBehaviour

Description This behaviour handles “SubscribePPlan” requests: the agent waits for
new “SubscribePPlan” messages, decides whether to comply with this
request and sends its acceptance or rejection back to the initiator.

This behaviour implements the receiving side for the first exchange of the
SubscribePPlan protocol (D5.3).

Inputs Means for checking whether the sender is legit or not (to be defined in a
later deliverable)

Updated set of agents to keep informed about changes in PPlans

Behaviour name InHomeOptimiser

Behaviour type CustomBehaviour

Description This behaviour builds a PPlan that makes uses of flexibility and energy
trade offers in order to minimize energy-related costs while keeping
sufficient satisfaction from prosumers.

Inputs Flexibilities provided by devices. Additional optimization-related
information to be defined in D3.2/D3.3.

Updated PPlan

Behaviour name PublishPPlan

Behaviour type OneShotBehaviour

Description This behaviour sends PPlans to agents to be kept informed about PPlan
changes
Inputs PPlan, agents to be kept informed about PPlan changes

Outputs --

Behaviour name ManageNewFlexibilities

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours of the CEMS agent related to the
management of the evolution of flexibilities from devices. Combined
behaviours are SubscribeFlexibilities, ReceiveFlexibility,
InHomeOptimizer and PublishPPlan, as described the FSM figures in
Section 4.1.3

-
Outputs --

Behaviour name SubscribeFlexibilities
Behaviour type Proposelnitiator

Description Register to devices agents in order to be informed when the flexibility of a
device changes. See the SubscribeFlexibilities protocol in D5.3.
Inputs Device Agents to be registered to.
Deliverable D3.1 61 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering o

Outputs --

Behaviour name ReceiveFlexibilities

Behaviour type OneShotBehaviour
Description This behaviour handles messages from Device Agents indicating a change
of available flexibilities.

Outputs Updated flexibilities

Behaviour name OptimizelnternalPortfolio (Receiver)

Behaviour type CustomBehaviour

Description Handles the negotiation in the flexibility market, from the CEMS side.
This behaviour will be defined in D3.2 and D3.3.

To be defined, FlexRequests, Flexibilities

Outputs Updated FlexOrders

Behaviour name ManageDevices

Behaviour type FSMBehaviour

Description This behaviour combines the plans related to the management of devices.
This behaviour combines RealizePPlan and InformControlSignal.

Outputs --

Behaviour name RealizeP-Plan

Behaviour type OneShotBehaviour

Description This behaviour realises its P-plan for a PTU by sending control signals to
Device Agents.

P-Plan

Outputs --

Behaviour name InformControlSignals

Behaviour type AchieveRElnitiator

Description This behaviour sends control signals (indicating the activity to be
performed by a device) to the corresponding in-home controllable devices.
Control signals

Outputs --

Behaviour name MonitorAndReportConsumption

Behaviour type FSMBehaviour
This behaviour combines the behaviours related to the monitoring of the
Deliverable D3.1 62 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

)

O\

Mas*tering

consumption. This behaviour combines ReceiveDeviceConsumption and
WarnIfDeviation.

Outputs --

Behaviour name ReceiveDeviceConsumption
Behaviour type OneShotBehaviour

Description This behaviour handles the current and expected consumption messages
from device agents

Outputs Updated consumption profile

Behaviour name WarnlfDeviation
Behaviour type OneShotBehaviour

Description This behaviour warns the AGR agent in case of deviation from the
proposed PPlan.
PPlan, current consumption per device
Outputs --
4.15.4 Device-level behaviour
Bahavicwr |
-
FSMBehaviour
DeviceAgentBebaviour
- fsmSanwEubscnbeFleatiihyBan FSMSarveSutsorbeF kabiny FEMReceiveUserSettings
« fur ol weBeh | FSMReceneUserSetings
RealzePlan - fumRuosnnf or Beh | FSMRecevwFor Jodutes - receveUserSetingsBeh | RecenelsarSetings
~ - egizePlnBah | Reaizetan - COmputeFledbatyEan | ComputeFleitiity
e mecaNC - SNACUTENICOrGTEbcn - SendCUTerConsumghion - DUEASTFIa il Beh_PUBASF ity
FSMServeSubscribeFlexbiity i
SANMELDSCTSF I Ban - SeneSubsCrRFRaEilty B
- computsFlabityEan - ComputeFiantiity . 4
pbishF PubishF publstFleabeltyEan © FublshFleatity

Figure 28: Device agent FSM behaviours UML diagram

Figure 28 illustrates a general view of the CEMS behaviours that are explained in the following
subsections. The whole UML diagram for the CEMS behaviours is included in the Annex of this
deliverable

Deliverable D3.1 63 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Behaviour name DeviceAgentBehaviour

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours related to the monitoring of the
consumption. This behaviour combines FSMServeSubscribeFlexibility,
FSMReceiveUserSettings, FSMReceiveUpdateForecast, RealizePlan and
SendCurrentConsumption as detailed in Figure [].

-
Outputs --

Behaviour name FSMServeSubscribeFlexibility
Behaviour type FSMBehaviour

Description This behaviour combines the behaviours related to consumption
monitoring. This behaviour combines ServeSubscribeFlexibility,
ComputeFlexibility and PublishFlexibility.

-

Behaviour name ServeSubscribeFlexibility

Behaviour type OneShotBehaviour

Description This behaviour checks external requests for being informed about
flexibilities. If this request is granted, the requester is added to the list of
agents to inform when flexibilities are updated.

TR -

Updated list of agents to be informed when flexibility changes.

Behaviour name ComputeFlexibility

Behaviour type OneShotBehaviour

Description This behaviour evaluates the flexibilities and expected consumption of a
device based on user settings and forecasts. To be completed in D3.2 and
D3.3.

m Forecasts, user settings, consumption profile generator
Outputs Updated flexibilities

Behaviour name PublishFlexibility

Behaviour type OneShotBehaviour

Description This behaviour send flexibilities to agents to be kept informed about the
device’s flexibilities

Flexibilities, agents to be informed about device’s flexibilities

Outputs --

Deliverable D3.1 64 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

Behaviour name FSMReceiveUserSettings

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours related to the monitoring of the
consumption. This behaviour = combines ReceiveUserSettings,
ComputeFlexibility and PublishFlexibility as detailed in Figure [].

Outputs --

Behaviour name ReceiveUserSettings
Behaviour type CyclicBehaviour
Description Handle the insertion of user settings.

Outputs Updated user settings

Behaviour name FSMReceiveForecastUpdates

Behaviour type FSMBehaviour

Description This behaviour combines the behaviours related to the monitoring of the
consumption. This behaviour combines ReceiveForecastUpdates,
ComputeFlexibility and PublishFlexibility as detailed in Figure [].

Oupus |

Behaviour name SubscribeForecast

Behaviour type CustomBehaviour

Description Register the CEMS agent in the forecast service in order to be notified
when forecasts are updated. To be implemented in D3.2/D3.3

Forecast services

Outputs --

Behaviour name ReceiveForecastUpdates
Behaviour type OneShotBehaviour

Description The device agent receives via web services the new forecasted values

Forecasts services

Updted forccasts

Behaviour name RealizePlan

Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the realization of the
plan. This behaviour combines ReceiveControlSignals and

Deliverable D3.1 65 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

)

o\ x
Mas*tering {

SetActuatorValues as detailed in Figure [].

Outputs --

Behaviour name ReceiveControlSignals
Behaviour type OneShotBehavior
Description Receive the control signals from the CEMS agent

Outputs Updated control signals

Behaviour name SetActuatorValues

Behaviour type OneShotBehaviour

Description Set up the actuators of the controllable device with the values to be read
from device configuration.

Control signals

Outputs --

Behaviour name SendCurrentConsumption

Behaviour type OneShotBehaviour

Description Report the current energy consumption to agents to keep informed about
the consumption of energy

Monitored consumption, agents to keep informed

Outputs --

Deliverable D3.1 66 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas*tering

* % %

* X %

* oy k

5 Constraints and objectives

MAS2TERING takes a pragmatic, practical approach when choosing the agent model in order to

maintain the internal agent architecture simple and the system scalable. Each agent is modelled using a
constraint programming approach in which goals and preferences of the agent are modelled using a
mathematical model based on variables and (hard and soft) constraints. More complex agent models
such as Belief-Desired-Intention (BDI) models are not expected [6].

This module implements two main concepts:

1. Variables: A variable is a mathematical object whose value can vary across a set called the
variable’s domain. Variables can be given a value as a result of an observation (e.g. the

external temperature) or as a result of a decision taken by an agent (i.e. a decision variable).

Each variable is associated to a domain and a domain can be discrete or continuous. Another
related class is the VariablesAssignment class that allows assigning specific values (i.e.

contained in their domain) to variables. The set of classes corresponding to these variable
related concepts are illustrated in Figure 29.

<<Java Class>>
®Variable<T>

@ Variable(Domain)

@ getld():uUID

@ getDomain():Domain

@ setDomain(Domain).void

o toString():String

@ hashCode()int

@ isinDomain(Object):boolean
@ equals(Object):boolean

@ compareTo(T)int

—domain\l/OJ

<<Java Interface>>
©@Domain

@ isValid(Object):boolean
o getSize()int

4 %

<<Java Class>>
(®VariablesAssignment

@ VariablesAssignment()

@ setValue(Variable<T>,T):void
o getValue(Variable<T>)

@ getNumberOfVariables()int
@ getVariables():Set<Variable>
@ contains(Variable):boolean
@ toString():String

<<Java Class>>

<<Java Class>>

@ ContinuousDomain

(®DiscreteDomain<T>

@ ContinuousDomain()
@ isValid(Object):boolean
o getSize()int

@ DiscreteDomain(T[))

@ isValid(Object):boolean

o getPossibleValues().List<T>
@ getSize()int

o toString():String

Figure 29 Classes in the variable package

2. Constraints: Each constraint is defined over a set of variables. As such all constraints need to

implement the method getVariableSet() that returns the set of variables over which is defined
the constraint. As shown in Figure 30, there two main types of constraints:

Deliverable D3.1
MAS2TERING Multi-agent systems holonic platform generic components

67

Version 1.0
May 2016

A
Mas*tering

1. Soft: A soft constraint returns some cost for some assignment of variables. As such a

soft constraint is required to implement the method getValue that given an assignment

for variables returns the corresponding cost4;

2. Hard: A hard constraint must not be violated otherwise the solution is not valid. As
such a hard constraint is required to implement the method isValid that given a

variable assignment returns a boolean indicating if the constraint is satisfied or not.

<<Java Interface>>
@ Constraint

@ getVariableSet():Set<Variable>

<<Java Interface>>
@ HardConstraint

<<Java Interface>>
© SoftConstraint

@ isValid(VariablesAssignment):boolean

@ getValue(VariablesAssignment).double

Figure 30: Classes in the constraint package.

Classes in the package behaviour allow associating to each agent with a set of objectives and
constraints (i.e. goals for socio-economic agents or operation constraints for physical resource agents).

Let A be the set of agents. Then, each agent a; € A in MAS2TERING has a set of soft constraints,
namely S;, and a set of hard constraints, namely H;. These constraints are added by the methods
addSoftConstraint and addHardConstraint.

<<Java Class>>
G Agent

<<Java Class>>
(®Mas2teringAgent

eu.cea.ladis.dem.jadeproximalmp

@ 'Mas2teringAgent()
o getCost(VariablesAssignment):.double
@ addSoftConstraint(SoftConstraint):void
@ addHardConstraint(HardConstraint):void

Figure 31: MAS2TERING agent class

4 Notice that since the cost is not restricted to be positive, this method also allows returning some

reward expressed as negative cost.

Deliverable D3.1

68

MAS2TERING Multi-agent systems holonic platform generic components

Version 1.0
May 2016

A
Mas*tering £

Then, the set of goals of an agent is modelled as a constraint optimisation problem in which each agent
aims to optimise an objective function with respect to some variables (i.e. X;) in the presence of
constraint on those variables as follows:

min s(X;)
subject to: h(X;), Yh € H;

Note that since the objective function is actually the sum of the costs returned by individual soft
constraints, it is meant to be minimised. Finally, each agent has also a getCost() function that given an
assignment of values to variables (i.e. a VariableAssignment) returns the cost of this agent with respect
to this state.

In the following, we define the constraints and objectives for each of the specific device agents that
will be instantiated in the MAS2TERING use cases.

5.1 Generator

Next tables show the physical definition in terms of soft and hard constraints that the power schedule
must meet:

Hard constraints:

Pmin < _pgen < Pmax The generator supplies power between a minimum and a maximum
depending on the generator’s specifications.
Rmin < _Dpgen < Rmax R is ramp rate limit; this constraint limits the change of power levels

from one period to the next of a generator.
Soft constraints:

Cost(Pgen) = X1_1 [€ * -Pgen(t)] Cost of operating the generator at a given power level over a
single time period. It can be:
c=Bx * linear
c=ax’+px * quadratic
where
_ Generator power schedule
Difference power schedule between the
- current time step and the previous one.
Cost coefficients.
5.2 Curtailable Load

The soft and hard constraints for a curtailable load are listed below:

Hard constraints:

Deliverable D3.1 69 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

(i.e. not to produce) energy.

The amount of energy delivered is always less
than the desired.

Soft constraints:

A linear penalty is applied on the difference
between the desired and the delivered power (i.e
the energy shortfall.)

Where
_ Deferrable load power schedule
_ Desired load power schedule
_ Linear penalty parameter. Greater than zero.
53 Deferrable load

The deferrable load does not have soft constraints. However, the energy consumption in each period of
time is constrained by E. In some cases, the load can only be turned on or off in each period of time.
Therefore, two hard constraints can be extracted:

After the starting time slot, the device needs to
charge the needed amount of energy before the
final time slot.

The deferrable load is restricted to consume (i.e.
not to produce) energy (between 0 and L™).

Where:

Deferrable load power schedule

_ Maximum time slot
_ Total energy required for the time interval A ... D

_ Maximum energy consumption of the device for each time slot

<
E.
:
=
(¢
3

5.4 Storage

Similar to the deferrable load, a storage device is only defined by hard constraints:

The power transmitted must be between the
discharging and charging rates limits.
The charge level must not exceed the battery

capacity

Where:

Deliverable D3.1 0 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

~

A
Mas’tering £

_ Battery power schedule
- Maximum discharging rate

Maximum charging rate

gmes |
- Battery capacity
gt

Battery initial charge
5.5 Fixed load

A Fixed load has a unique hard constraint, which is as follows:

The desired consumption of a fixed load must be
satisfied in each period.

Where:
Table 6 Fixed Load parameters
_ Fixed load power schedule
_ Desired load power schedule
5.6 External tie

The soft constraints of an external tie vary depending if the external tie allows pulling electricity from
the utility, injecting electricity to the utility or both.

Case pulling from: T

Z —P™(T) - pex(7)

T=1

Case injecting to: T .
Z —P?(7) - Pea(T)
T=1

Case pulling from/injecting —(7) * Pew + Y(T) * |peas| VT =1...T
to:

where:

() = P (T) —2P°“ (1)

In the same way, this device presents some hard constraints as well:

0% pu(r) S), Vo1, T

pelDIS B et
to:

where

Table 7 External Tie parameters

_ External tie power schedule

Price per unit of energy pulled from the source (Default value)

Deliverable D3.1 71 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering o

_ Price per unit of energy injected to the source (Default value)
_ Maximum transaction of electricity (Default value: Infinity)

5.7 Transmission line

A transmission line works at the distribution level and may carry some energy losses that are

considered as hard constraints:

The power transmitted must respect
_ e CapaCity.
The power that gets in the line must
where: be the same that the power that gets
out (power conservation) taking into
account losses.

where:
_ First power schedule of the line
_ Second power schedule of the line
Deliverable D3.1 72 Version 1.0

MAS2TERING Multi-agent systems holonic platform generic components May 2016

Mas’ter|ng

6 Behaviours and agents involved in the use cases

We include a short description of the project’s use cases from an agent perspective by specifying
which agents and which behaviours are involved in each use case. For this purpose, we provide a
traceability matrix, in which a cell marked with a “X”” denotes that the behaviour/agent is involved in a
given use case

In UCI, the distribution level of a Smart Grid will include various types of active dynamic devices,
such as distributed generators based on solar and wind, batteries, deferrable loads, curtailable loads,
and electric vehicles, whose control and scheduling amount to a very complex management problem.

UCI concerns the Prosumer in-home optimisation, the interoperability and the connection to handle
requests/connections to the flexibility market via the aggregator. Agents involved in this UC are:

1. CEMS

2. Device that represents the devices installed at home level. Within these devices many subtypes
are involved.

The CEMS agent is owner of all the in-home devices and the Distributed Energy Resources (DERs)
inside its home. Each of those physical devices has a cost function and hence the cost function of the
prosumer is the sum of costs functions of its devices. When deploying the system many Device agents
but just one CEMS may be instantiated.

UC?2 deals instead with local management at the district level. Since the local community is considered
as a collection of consumption/generation nodes that are managed by a single entity, the aggregator.
Therefore a new agent takes place in the system, the Aggregator. It expected to communicate with the
houses (CEMS agents) that belong to this district. Several Device and CEMS agents can be involved
in this use case which would be associated to one Aggregator agent.

UC3 is considered as an extension of UC2 because it takes the entire low voltage power grid as the
union of many local communities in a given area: the concept of DSO emerges. The use case may
involve one or more DSOs which communicate with the aggregators in order to negotiate the power
plans and inform the congestion points of the power grid. Furthermore, each aggregator exchange
messages with CEMS agents which are also linked to Device agents.

Agents UCl1 uc2 UC3

X
Aggregator X X X
CEMS X X X

Device (subtypes) DeferrableLoad, DeferrableLoad, DeferrableLoad,
CurtailableLoad, CurtailableLoad, CurtailableLoad,

FixedLoad, Battery FixedLoad, Battery FixedLoad, Battery,
TransmissionLine

Table 8 Agents used in use cases

Deliverable D3.1 73 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’tering £

Table 8 and Table 9 show all the agent types and behaviours implemented in the platform. As we can
see, they can be assigned to one or more use cases.

=
o

Behaviours ucC2 uUCs3
PublishP-Plan
InHomeOptimiser
ReceiveFlexibility
HandleFlexibilityRequest
ServeSubscribePPlan
SubscribeFlexibilities

RealisePlan

X
X
X
X

InformControlSignals
SubscribeForecast
ServeSubscribeFlexibility
ReceiveUserSettings
ReceiveUpdatedForecast
ComputeFlexibility
PublishFlexibility
ReceiveControlSignals
SetActuatorValues
RegisterConnections

T e A e e e i

QueryCongestionPoints
SubscribePPlans
ReceivePPlan

T e e e R e e e Ml e

InformDPrognosis
IdentifyChangesInAPlan
IdentifyChangesInDPrognoses

o

OptimiselnternalPortfolio

T T e e e e e S R e e e e e

il

TradeFlexibilityForPortfolioOptimisatio

FlexibilityTradingAGRDSO X
ForecastNonAggregatorConnections

ComputeMissingPrognoses

GridSafetyAnalysis

RegisterLongTermCongestionPoints

ReceiveDPrognoses

QueryActiveAggregators

E I e Al

Table 9 Behaviours used in use cases

Deliverable D3.1 74 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

A\
Mas’ter|ne C

* ok

* %

7 Conclusions and next steps

This deliverable provides a first version of the implementation of the multi-agent and holonic platform
for MAS2TERING. To extract the requirements and for the analysis phase, our deliverable was based
on the USEF framework described in deliverable D1.6, with which MAS2TERING aligns, and the use
cases defined in deliverable D6.1, which will be used to validate our proposal.

GAIA methodology, which has been adopted in deliverable D2.2 as agent development methodology,
has been also used in this deliverable. Furthermore, the MAS platform, defined in deliverable D2.2 has
been also used as the base for the implementation of the identified agents, their behaviours, and their
constraints.

As for the Smart grid model, this deliverable presents a MAS2TERING common data model in order
to allow the common expression of information exchange between agents. It also details the alignment
of this common data model with the three identified standards for use, namely the CIM standard for
modelling the electrical domain, the OpenADR standard for modelling demand response within the
Smart Grid, and the Energy@Home standard for domestic conceptual modelling and their relevance
for the different use cases.

As for the agents, this deliverable details the implementation of the four types of agents that have been
defined inside the Agents Model component, and that will be instantiated in the project use cases that
are specified in the deliverable D6.1. These agents are the Device agent (with its seven subtypes
depending on the type of flexibility provided), the CEMS agent, the AGR agent, and the DSO agent.
Each of the subtypes of the Device agent has its constraints and objectives, which have been specified
and implemented in this deliverable. The communication protocols between the agents are defined in
deliverable D5.3, and will be implemented inside the Communication and protocol component (as part
of D5.4), whereas the security aspects studied in deliverable D4.2 will be implemented inside the
Security component of the MAS platform.

This deliverable is accompanied by the first version software implementation of the specified agents
and their behaviours in this document. The following deliverables in this work package shall focus on
designing and implementing the Forecasting algorithms and the optimisation protocols in order to be
integrated into the agents, completing the MAS implementation phase.

Deliverable D3.1 75 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

A\
Mas’ter|ng %

* ok

* %

References

[1] E.P.N. . S. Pavlos Moraitis, “Engineering JADE Agents with the Gaia Methodology,” Agent
Technologies, Infrastructures, Tools, and Applications for E-Services , 2002.

[2] M. Wooldridge, D. Kinny and N. R. Jennings, “"The Gaia methodology for agent-oriented analysis
and design,” Autonomous Agents and multi-agent systems, vol. 3.3, pp. 285-312, 2000.

[3] F. Bellifemine, G. Caire and D. Greenwood, Developing multi-agent systems with JADE, Wiley,
2007.

[4] N. 1. S. Pavlos Moraitis, “The Gaia2Jade process for multi-agent systems development,” Applied
Artificial Intelligence, vol. 20, no. 2-4, pp. 251-273, 2006.

[5] USEF, “USEF: The framework explained,” USEF, 2015.

[6] A.S. Georgeff, “DI Agents: from theory to practice,” in B. First International Conference on
Multiagent Systems , San Francisco, California, USA, 1995.

[7] D.-.D.o.E. [online], “Title XIll Smart Grid,” [Online]. Available:
http://www.oe.energy.gov/DocumentsandMedia/EISA_Title_XIll_Smart_Grid.pdf.

[8] M. McGranaghan and B. Deaver, “Sensors and Monitoring Challanges in the Smart Grid,” in
Future of Instrumentation International Workshop (FIIW), 2012.

[9] E.C.J.L.S.B.M Kraning, “Dynamic Network Energy Management via Proximal Message
Passing,” Foundations and Trends in Optimization, vol. 1, no. 2, pp. 73-126, 2014.

[10] P. S. a. S. Thiébaux, “Distributed Multi-Period Optimal Power Flow for Demand Response in
Microgrids,” in e-Energy, Canberra, 2015.

[11] R. Segovia and M. Sanchez, “Set of common functional requirements of the Smart Meter,”
European Commission, 2011.

[12] EUROPEAN COMMISSION, “Report from the Commission: Benchmarking smart metering
deployment in the EU-27 with a focus on electricity,” Brussels, 2014,

[13] M. Pau, A. Pegoraro and S. Sulis, “Branch current state estimator for distribution system based
on synchronised measurements,” IEEE International Workshop on Appled Measurements for
Power Systems (AMPS), pp. 53-58, 2012.

Deliverable D3.1 76 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

* X %

A\
Mas’ter|ng %

* ok

* %

[14] M. Pau, P. Pegoraro and S. Sulis, “Efficient branch Current based Distribution System State
Estimator in- luding Synchronised Measurements,” IEEE Transactions on Instrumentation and
Measurements, 2013.

[15] M. Pau, P. Pegoraro and S. Sulis, “WLS Distribution System State Estimator Based on Voltages or
Branch Currents: Accuracy and Performance Comparison,” IEEE Instrumentation and
Measurement Technology Conference I2ZMTC, pp. 493-498, 2013.

[16] J. Liu, F. Ponci, A. Monti, C. Muscas and P. Pegoraro, “Trade-Offs in PMU Deployment for State
Estimation in Active Distribution Grids,” IEEE Transactions on Smart Grids, vol. 3, no. 2, pp. 915-
924, 2012.

[17] J. Liu, F. Ponci, A. Monti, C. Muscas, P. Pegoraro and S. Sulis, “Optimal Placement for Robust
Distributed Measurement Systems in Active Distribution Grids,” IEEE Instrumentation and
Measurement Technology Conference I2MTC 2013 Minneapolis, pp. 206-211, 2013.

[18] K. D. McBee, “Benefits of Utilizing a Smart Grid Monitoring System to Improve Feeder Voltage,”
in North America Power Symposium (NAPS), 2009.

[19] L. Kumar, “A literature review on Distribution System State Estimation,” SMART GRID
Technologies, 2015.

[20] a. L. C. L. Oliva, “REST Web Services for Collaborative Work Environments. In: Frontiers in
Artificial Intelligence and Applications,” in Proceedings of the 12th International Conference of
the Catalan Association for Artificial Intelligence., Amsterdam, 2009.

[21] E. W. a. R. A. C. Pautasso, “REST: Advanced Research Topics and Practical Applications,” in 47-48,
NewYork, 2014.

[22] SOAPUI, “Best Practices: Understanding REST Headers and Parameters,” [Online]. Available:
https://www.soapui.org/testing-dojo/best-practices/understanding-rest-headers-and-
parameters.html. [Accessed 23 Feb 2016].

Deliverable D3.1 77 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

AN\
Mas’ter|ne £

Annex A

Al Finite State Machines

This section introduces further information for understanding the meaning of FSMs described in this
document. FSMs model the possible evolutions of the states of a system. Basically, a system is
assumed to be in a given state. The system can change from one state to another due to the occurrence
of certain events (or actions), depending on the current state.

Slightly more formally, a FSM is composed of a set of states (represented by nodes) and transitions
(represented by arrows). One of these states is referred to as the initial state (represented by a simple
black dot) and another state is referred to as the final state. Each transition is related to an event
(represented by labels near the arrows). When there is only one possible transition, we hide the event
for sake of simplicity.

The system is run as follows: system “starts” at the initial state. When an event occurs, the system
evolves from the current state to another, following the transition that possesses the adequate event
name. When a final state is reached, the system is stopped. Note that final states are not necessarily
reachable nor reached: the system can run forever.

FSMs are used in MAS2TERING for describing agent behaviours as such. Each state is a behaviour.
In other words, when the system is in a given state, then the agent is performing the related behaviour
(in practice, this behaviour consists of a procedure that is executed until a function indicates that this
behaviour is terminated). An event is raised when the behaviour is completed. The nature of the event
is determined by how this behaviour was performed (e.g. if congestion was discovered or not). In
overall, the agent is performing a given behaviour until this behaviour is completed. Then the agent
triggers a transition and starts performing another behaviour, until a final state is reached.

In addition to the basic FSM constructs, we rely on two more elaborated FSM constructs: forks (or
parallel executions) and hierarchical FSMs. Forks are a special form of transition. When firing such a
transition, the system goes into not one but a set of states. Basically, the system “runs” multiple FSMs
in parallel. In our case, parallelism consists of a round-robin: each FSM is run in turn, one after the
other

Hierarchical FSMs are a specific way for representing states. Basically, this technique consists in
representing the internal details of what happens in a state as a FSM. In other words, a state/behaviour
of a FSM is represented in using another FSM. The event arising from a FSM-based state matches the
last event raised within this state. In other words, a state is, instead of a piece of code, another FSM.
When firing such a state, a user can “zoom in” this state and find another FSM describing how this
state is being executed. This representation is very common for modelling MAS agents. Further details
about the FSM formalism and their use for building MAS agents in [3].

Deliverable D3.1 78 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng .

Annex B

B.1 Conversion process from ontologies to JADE

Through this conversion process, the ontology’s axioms were formalised using JADE constructs, as
shown in Figure 32, Figure 33, and Figure 34, which show the formalisation of the vocabulary, a class
(including inheritance and data properties) and object properties (referred to as predicates in JADE
documentation) respectively.

public class MasteringOntoclogy extends Ontology {

public static final java.lang.String GENERATION_ PROFILE =
public static final Jjava.lang.String HAS_CONGESTION_POINT
public static final java.lang.String D_G_UNIT = "D-G-UNIT"
public static final java.lang.String SENSOR_OBSERVATION = ~
public static final java.lang.String FREEZER = "E o
public static final java.lang.String VARIABLE PROFI
public static final java.lang.String MARKET = "MZ
public static final java.lang.String H E M S = "H-E-M
public static final java.lang.String FRIDGE_FREEZER
public static final java.lang.String HAS_ENERGY PHASE =
public static final java.lang.String FLEXIBILITY MARKET =

public static final java.lang.String HAS READING = "HA

Figure 32 Except of JADE ACL vocabulary definition

Deliverable D3.1 79 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

A
Mas’ter|ng £

public class DeferrableLoad extends DomesticLoad {

public vocid setHasTotalEnergyDemand(java.lang.Float HasTotalEnergyDemand) {
this.HasTotalEnergyDemand = HasTotalEnergyDemand ;

}
public java.lang.Float getHasTotalEnergyDemand() {
return this.HasTotalEnergyDemand;

}

private java.lang.Float _hasTotalEnergyDemand;

public veid setHasMinDuration(java.lang.Flcat HasMinDuration) {
this.HasMinDuration = HasMinDuration ;

}
public java.lang.Float getHasMinDuration() {
return this.HasMinDuration;

}

private java.lang.Float _hasMinDuration;

public void setHasPlannedDeferment(java.lang.Float HasPlannedDeferment) {
this.HasPlannedDeferment = HasPlannedDeferment ;

}
public java.lang.Float getHasPlannedDeferment() {
return this.HasPlannedDeferment;

}

private java.lang.Float _hasPlannedDeferment;

public void setHasExecutionDeadline (java.lang.String HasExecutionDeadline) {
this.HasExecutionDeadline = HasExecutionDeadline ;

}
public java.lang.String getHasExecutionDeadline() {
return this.HasExecutionDeadline;

}
private java.lang.String _hasExecutionDeadline;

Figure 33 Example of JADE ACL ontology class definition

public class HasEnergyPhase extends Predicate {

public void setEnergyPhase (EnergyPhase EnergyPhase) {
this.EnergyPhase = EnergyPhase ;

}

public void setMode (Mode Mode) {
this.Mode = Mode ;

}

public EnergyPhase getEnergyPhase() {
return this.EnergyPhase;

}

public Mode getMode() {
return this.Mode:;

}

private EnergyPhase _energyPhase;

private Mode _mode;

Figure 34 Example of JADE ACL ontology predicate definition

Deliverable D3.1 80 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

