
	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

1	

MAS2TERING
Multi-Agent Systems and Secured coupling of Telecom and Energy gRIds

for Next Generation smartgrid services
FP7 – 619682

D3.1 Multi-agent systems holonic
platform generic components

Lead Author: Hassan Sleiman (CEA), Meritxell Vinyals (CEA)

With contributions from: Sandra Garcia Rodriguez and Loïs Vanhee
(CEA), Michael Dibley (CU), Shaun Howell (CU), Jean-Laurent Hippolyte

(CU), Yacine Rezgui (CU), Julien Ardeois (Engie)

1st Quality reviewer: Juan M. Espeche (R2M)

2nd Quality reviewer: Monjur Mourshed (CU)

Deliverable nature: Software (O)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: 29 February 2016 (M18)

Actual delivery date: 30 May 2016 (M21)

Version: 1.0

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

2	

Abstract

This deliverable is intended to provide a limited public release of the software components of the
multi-agent holonic platform developed in MAS2TERING. This document provides the specifications
for the smart grid data model for MAS2TERING, the agents and their behaviours that will run in the
multi-agent system platform, and the constraints and the objectives for these agents. These
specifications were obtained from the requirements obtained in D2.1, the use cases that follow the
Universal Smart Energy Framework (USEF) framework described in D6.1, and the multi-agent
systems (MAS) platform described in D2.2. The GAIA methodology, which provides the
methodological tools towards successfully and efficiently implementing problem solving MASs and
which has been used in D2.2, has also been used in this deliverable. It is completed with the
GAIA2JADE, which complements the implementation-independent GAIA methodology to support
MAS development using the JADE framework. In addition, this document is accompanied by a
software implementation of those components.

[End of abstract]

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

3	

Executive summary
The development of the multi-agent, holonic, and secure platform in MAS2TERING is the main focus
of this deliverable. This platform aims at providing an integrated platform for distributed management
of the Smart Grid, based on multi-agent systems. Such platform shall allow the optimisation of
generation, storage and distribution, and upgrade the grid with self-healing capabilities, which will be
the focus of the deliverable D3.3. This platform will be closely integrated within the high-level grid
architecture, provided in the deliverable D2.2 from WP2.

This document is based on the use cases defined in Deliverable D6.1, and the Universal Smart Energy
Framework (USEF), extensively studied in the deliverable D1.6 and with which MAS2TERING
project aligns. The specification is performed following the GAIA methodology, whereas the
implementation is performed using the GAIA2JADE process; i.e., we devise the multi agent system,
using the JADE framework, based on the GAIA models from the analysis and design phases.

Universal Smart Energy Framework (USEF) is a reference framework for market design, actor
interactions and common flexibility services between the actors. Since MAS2TERING aligns with
USEF, the data model, the agent types and their roles have been identified and specified based on
USEF’s specifications. These agents are: Device agent, Customer Energy Management System
(CEMS) agent, Aggregator (AGR) agent, and Distributor System Operator (DSO) agent.

MAS2TERING defines three use cases in the deliverable D6.1, which will be used to validate the
solution based on multi-agent systems. The first use case focuses on home-level optimisation,
including the interoperability and the connections to handle requests/connections to the flexibility
market via the aggregator. Agents involved in this use case are the Device agents, and the CEMS
agent. The second use case deals with the local management, at the district level, by involving the
AGR, which communicates with the CEMS agents deployed in the houses of the local community.
The third use case extends the previous use case since it considers the entire low voltage power grid as
the union of many local communities in a given area. This is performed by involving the DSO agent,
which communicates with the aggregators to negotiate the power plans and to inform the congestion
points of the power grid, if any, and consequently procure flexibility for congestion/capacity
management.

GAIA methodology, which has been applied in deliverable D2.2, is also followed in this deliverable to
complete the development phase. GAIA starts at the analysis phase by collecting the specifications of
the multi-agent based system. It identifies the global behaviours of the system, the roles model that
captures the basic skills required for each type of agent, the interaction modes that captures the needed
interactions based on the previous roles, and the rules, which are the constraints on the execution
activities of roles and protocols. The analysis phase of GAIA produces a preliminary roles model, a
preliminary interaction model, and a set of organisational rules. Then, the design phase in GAIA aims
at producing the complete specification of the MAS following these four sub-phases, namely:
definition of the overall organisational structure, considering the adopted organisational structure to
update the role and interaction models, the definition of the agents models by specifying agents’ types
and their instances, and the definition of the services model that defines blocks of activities with their
conditions related with the agent roles. Finally, GAIA2JADE provides the process to develop the

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

4	

specified agents, roles, behaviours, services, and protocols in JADE. Figure 1 illustrates an overview
of this deliverable.

Figure 1: Summary of this deliverable contents

This deliverable aims at providing the specifications and the implementation of the data model, the
constraints, the agent model, and the behaviours of the agents. We first provide the background of our
specifications by briefly describing the agent types identified based on USEF, the use cases, the
followed methodology, and the MAS platform where our solution has been developed. Then, the core
of this document provides the smart grid data model, the agents and their behaviours, and the
constraints and objectives of the agents and the smart grid devices. The deliverable is completed with
deliverable D5.3 and D5.4 where the communication aspects of the agents are studied.

A research paper, based on this deliverable, has been submitted to CASE special session in IEEE
Smart Cities conference1. The paper also includes some contents regarding communication from D5.4,
and is attached as Annex in this deliverable (Annex E.1).

																																																													
1 http://events.unitn.it/en/isc2-2016/special-sessions

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

5	

Document Information

IST Project
Number

FP7 – 619682 Acronym MAS2TERING

Full Title Multi-Agent Systems and Secured coupling of Telecom and EnErgy gRIds
for Next Generation smart grid services

Project URL http://www.MAS2TERING.eu/
Document URL
EU Project Officer Patricia Arsene

Deliverable Number D3.1 Title Multi-agent systems holonic platform generic

components
Work Package Number WP3 Title Multi-agent systems and optimisation

Date of Delivery Contractual M18 Actual M21
Status Version 1.0 final □
Nature prototype □ report □ dissemination □
Dissemination level public X consortium □

Authors (Partner) CEA

Responsible Author
Name Hassan Sleiman E-mail Hassan.sleiman@cea.fr
Partner CEA Phone

Abstract
(for
dissemination)

This deliverable is intended to provide a limited public release of the software
components of the multi-agent holonic platform developed in MAS2TERING.
This document provides the specifications for the Smart Grid data model for
MAS2TERING, the constraints and the objectives, and the agents and their
behaviours that will run in the multi-agent system platform. These specifications
were obtained from the requirements obtained in D2.1, the use cases that follow
the Universal Smart Energy Framework (USEF) framework described in D6.1,
and the multi-agent systems (MAS) platform described in D2.2. The GAIA
methodology, which provides methodological tools towards successfully and
efficiently implementing problem solving MASs and which has been used in
D2.2, has also been used in this deliverable. It is completed with the
GAIA2JADE, which complements the implementation-independent GAIA
methodology to support MAS development using the JADE framework. In
addition, this document is accompanied by a software implementation of those
components.

Keywords Multi-agent system, MAS2TERING agents’ model, Smart grid model, messages
ontology, data model.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

6	

Version Log
Issue Date Rev. No. Author Change
03/11/2015 0.1 Meritxell Vinyals ToC released
09/11/2015 0.2 Meritxell Vinyals Added Section 1.1 and 1.2
01/12/2015 0.3 Meritxell Vinyals Added the Section 3.1 agent model.
29/01/2015 0.4 Meritxell Vinyals Completed Section 3.1
05/02/2015 0.5 Meritxell Vinyals Completed Section 3.2
10/02/2016 0.6 Sandra Garcia Completed Section 2.1 and 2.2
18/02/2016 0.7 Sandra Garcia Completed Section 4
22/02/2016 0.8 Sandra Garcia Reviewed Section 4. Format to document,

table and figures list and legends added.
23/02/2016 0.9 Meritxell Vinyals Added missing descriptions.
26/02/2016 0.10 Shaun Howell, Jean-

Laurent Hippolyte
Completed section Smart Grid data model

29/02/2016 0.11 Hassan Sleiman Prepare the advanced draft considering the
reviewers comments.

15/04/2016 0.12 Loïs Vanhée Added documentation about agent and
behaviour implementation.

15/04/2016 0.13 Hassan Sleiman,
Loïs Vanhée,
Meritxell Vinyals

Updated specification about agent and
behaviours

25/04/2016 0.14 Hassan Sleiman
Jean-Laurent Hippolyte

Updated the data model.
Review and update the document.

27/04/2016 0.15 Hassan Sleiman Review and update the document.
30/04/2016 0.16 Hassan Sleiman Update UML diagrams and Annex.
11/05/2016 0.17a Juan Manuel Espeche Deliverable review
12/05/2016 0.17b Monjur Mourshed Deliverable review
16/05/2016 0.18 Hassan Sleiman Deliverable modification addressing reviews
20/05/2016 0.18a Juan Manuel Espeche

Monjur Mourshed
Deliverable review (2nd round)

30/05/2016 1.0 Hassan Sleiman Deliverable final version.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

7	

Table of Contents

Executive	summary	...	3	

Document	Information	...	5	

Version	Log	..	6	

Table	of	Contents	..	7	

List	of	figures	...	10	

List	of	tables	..	12	

Abbreviations	..	13	

Definitions	...	14	

1	 Introduction	..	16	

2	 Background	...	19	

2.1	 Agent	types	and	roles	based	on	USEF	framework	..	19	

2.2	 MAS2TERING	use	cases	...	20	

2.3	 Methodology	...	20	

2.4	 MAS	platform	..	23	

2.4.1	 User	interface	..	23	

2.4.2	 Smart	grid	model	...	23	

2.4.3	 Agent	model	..	24	

2.4.4	 Constraints	and	objectives	..	25	

2.4.5	 Communication	and	Protocols	..	25	

2.4.6	 Security	component	..	25	

2.4.7	 Utilities	component	...	26	

3	 Smart	Grid	Model	..	27	

3.1	 The	CIM	...	27	

3.2	 The	OpenADR	..	29	

3.3	 Energy@Home	data	model	...	30	

3.4	 Use	case	based	description	logic	elicitation	..	33	

3.5	 Domain	perspective	of	energy	flexibility	...	33	

3.6	 Candidate	generic	domain	ontology	-	OWL	constructs	...	35	

3.7	 Candidate	protocol	payload	ontology	–	OWL	constructs	..	37	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

8	

3.8	 Candidate	ontology	-	JADE	constructs	..	38	

3.9	 Alignments	with	existing	standards	..	38	

4	 The	Agents	model	...	41	

4.1.1	 Distribution	System	Operator	(DSO)	Agent	...	41	

4.1.2	 Aggregator	Agent	..	44	

4.1.3	 Consumer	Energy	Management	System	(CEMS)	...	46	

4.1.4	 Device	Agent	...	47	

4.1.5	 Behaviours	...	51	

5	 Constraints	and	objectives	..	67	

5.1	 Generator	..	69	

5.2	 Curtailable	Load	..	69	

5.3	 Deferrable	load	...	70	

5.4	 Storage	..	70	

5.5	 Fixed	load	..	71	

5.6	 External	tie	..	71	

5.7	 Transmission	line	...	72	

6	 Behaviours	and	agents	involved	in	the	use	cases	...	73	

7	 Conclusions	and	next	steps	...	75	

References	..	76	

Annex	A	...	78	

A.1	 Finite	State	Machines	..	78	

Annex	B	...	79	

B.1	 Conversion	process	from	ontologies	to	JADE	..	79	

Annex	C	...	81	

C.1	 UML	Diagram	for	DSO	agent	behaviours	..	81	

C.2	 UML	Diagram	for	AGR	agent	behaviours	..	82	

C.3	 UML	Diagram	for	CEMS	agent	behaviours	..	83	

C.4	 UML	Diagram	for	Device	agent	behaviours	..	84	

Annex	D	...	85	

D.1	 Implementation	..	85	

Annex	E	...	93	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

9	

E.1	 Paper	submitted	to	CASE	special	session	in	IEEE	Smart	Cities.	...	93	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

10	

List of figures

Figure	1:	Summary	of	this	deliverable	contents	...	4	
Figure	2:	The	GAIA2JADE	process	and	the	JADE	implementation	process	package	17	
Figure	3		GAIA2JADE	definition	of	JADE	behaviours	and	agents	implementation	process	[1].	22	
Figure	4:	MAS	platform	architecture	..	23	
Figure	5	View	of	core	classes	of	the	MAS	level	...	24	
Figure	6:	Main	WG14	/	IEC	61968	CIM	packages	..	28	
Figure	7:	Smart	appliance	user	interface	based	on	the	Energy@Home	model	30	
Figure	8:	Breakdown	of	energy	profile	objects	and	properties	in	the	Energy@Home	data	model	31	
Figure	9:	MAS2TERING	model	layers	(based	on	Xtensible	Solutions	presentation)	32	
Figure	10	Domain	perspective	of	load	curtailment.	Black	profile	-	desired	load,	red	line	-	curtailed	
load	...	34	
Figure	11	Full	generic	OWL	model	class	list	..	35	
Figure	12	OWL	MVD	focusing	on	energy	scheduling	concepts	...	36	
Figure	13	OWL	MVD	focusing	on	device	concepts	..	36	
Figure	14	OWL	MVD	focussing	on	economic	concepts	...	36	
Figure	15	Generic	OWL	model	data	property	specification	..	37	
Figure	16:	Full	class	list	for	MAS-coupled	ontology,	and	example	of	class	property	specification	38	
Figure	17	Alignment	of	ontological	concepts	with	IEC	61968-9	...	39	
Figure	18	Alignment	of	ontological	concepts	with	CIM	..	39	
Figure	19	Alignment	of	ontological	concepts	with	Energy@Home	..	40	
Figure	20:	Overview	of	the	FSM	components	and	used	syntaxes	..	41	
Figure	21.	FSM	CEMS	agent	..	47	
Figure	22.	FSM	Device	agent	...	49	
Figure	23	Agents	hierarchy	in	JADE	...	49	
Figure	24:	Main	classes	in	the	Behaviour	package.	...	51	
Figure	25:	DSO	FSM	behaviours	UML	diagram	...	52	
Figure	26	AGR	FSM	behaviours	UML	diagram	..	55	
Figure	27:	CEMS	FSM	behaviours	UML	diagram	...	60	
Figure	28:	Device	agent	FSM	behaviours	UML	diagram	...	63	
Figure	29	Classes	in	the	variable	package	...	67	
Figure	30:	Classes	in	the	constraint	package.	...	68	
Figure	31:	MAS2TERING	agent	class	...	68	
Figure	32	Except	of	JADE	ACL	vocabulary	definition	...	79	
Figure	33	Example	of	JADE	ACL	ontology	class	definition	...	80	
Figure	34	Example	of	JADE	ACL	ontology	predicate	definition	...	80	
Figure	35:	Agent	class	diagrams	..	86	
Figure	36	Code	of	the	DSO	setup	function.	...	86	
Figure	37:	Code	of	the	“action()”	function	for	the	RegisterLongTermCongestionPoints	behaviour.	...	87	
Figure	38:	Code	of	the	definition	of	the	exit	events	of	the	DSOValidate	behaviour	87	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

11	

Figure	39:	Code	of	the	FinalEvents	and	onEnd()function	for	the	GridSafetyAnalysis	behaviour.
	..	88	
Figure	40:	Code	of	the	action	function	of	the	RegisterLongTermCongestionPoints	
behaviour	..	88	
Figure	41:	Code	of	the	state	definition	for	the	DSOBehaviour	..	89	
Figure	42:	Code	of	the	onEnd()	function	for	the	DSOValidate	behaviour.	89	
Figure	43:	Events	handled	by	the	DSOBehaviour	..	90	
Figure	44:	Code	for	defining	the	transitions	of	the	DSOBehaviour.	..	91	
Figure	45:	High-level	overview	of	the	DSO	Behaviour	class	and	direct	relationships	92	
Figure	46:	Detailed	overview	of	the	DSO	Validate	class	and	direct	relationships	92	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

12	

List of tables

Table	1	Agent	types	and	their	roles	..	19	
Table	2	Communications	between	agents	..	20	
Table	3	Classifications	of	likely	flexibilities	of	devices	...	34	
Table	4	Agent	type	description	template	..	41	
Table	5	Behaviours	description	template	...	51	
Table	6	Fixed	Load	parameters	...	71	
Table	7	External	Tie	parameters	...	71	
Table	8	Agents	used	in	use	cases	..	73	
Table	9	Behaviours	used	in	use	cases	...	74	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

13	

Abbreviations
ACL Agent Communication Language
AGR Aggregator
API Application Programming Interface
BRP Balance Responsible Party
CEMS Customer Energy Management System
CIS Component Interface Standards
CIM Common Information Model
DER Distributed Energy Resource
DF Directory Facilitator
DSO Distributor System Operator
FIPA Foundation for Intelligent Physical Agents
FSM Finite State Machine
HAN Home Area Network
IRM Interface Reference Model
JADE Java Agent Development Framework
LGPL Lesser General Public License
MAS Multi-Agent System
MVD Model View Definition
OMG Object Management Group
OpenADR Open Automated Demand Response
OSGi Open Services Gateway initiative
OWL Web Ontology Language
𝑄! The flexibility utilised
𝑄!"! The total energy consumption
RDF
PEV

Resource Description Framework
Plug-in Electric Vehicle

SPEM Software Process Engineering Meta-model
𝑇!"# Minimum amount of time the task requires to be completed.	
TSO The Transmission System Operator
UC Use case
UML Unified Modelling Language
URI Uniform Resource Identifier
USEF Universal Smart Energy Framework
WG Working group
WP Work package

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

14	

Definitions

FIPA: FIPA is an IEEE Computer Society standards organization that promotes agent-based
technology and the interoperability of its standards with other technologies.

JADE framework: JADE (Java Agent Development Framework) is a Java software Framework. It is
intended to simplify the implementation of multi-agent systems through a middle-ware that complies
with the FIPA specifications and through a set of graphical tools that support the debugging and
deployment tasks.

Multi-agent System (MAS): it is a system that models an application as a collection of components,
called agents, which are characterised by their autonomy, proactivity and an ability to communicate.
Agents in a MAS are considered improving the current methods for conceptualising, designing and
implementing software systems, and may also be the solution to the legacy software integration
problem.	

GAIA: It is a methodology for the analysis and design of agent-based systems. The key concepts in
GAIA are roles, which have associated with them responsibilities, permissions, activities, and
protocols.

GAIA2JADE: It is a development process for the agents that uses the GAIA models and provides a
roadmap for transforming GAIA formulas to Finite State Machine diagrams and then provide some
code generation for JADE implementation.

Finite State Machine (FSM): It is a mathematical model that can be used to model systems in
different areas, including software applications and communication protocols. It is composed of states,
connected by means of transitions, which are run once the transition conditions are fulfilled to pass
from one state to another. Please check Annex-A for more details.

CityGML: It is an open XML-based data model and format for the storage and exchange of virtual
3D city models. It defines the classes and relations for topographic objects in cities and regional
models.

A-plan: the expected consumption profile during the day of delivery for a given Aggregator portfolio
of Prosumers. This concept is aligned with USEF framework.

P-plan: the expected consumption profile during the day of delivery of a Prosumer. This concept is
aligned with USEF framework.

D-prognoses: the expected consumption profile during the day of delivery for a given aggregator
portfolio of Prosumers including only Prosumers related to a particular congestion point (i.e. the D-
prognoses can be derived from the A-plan of an AGR excluding all prosumers not related to the
particular Congestion Point). This prognosis is sent by the AGR agent to the DSO agent in order that
the latter can perform grid safety analysis. This concept is aligned with USEF framework.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

15	

CEMS: the functional role defined in Common Information Model by CEN-CENELEC-ETSI Smart
Grid Coordination Group. The CEMS concept is identical to the USEF BEMS (Building Energy
Management System) but it operates at home level.

Device Abstraction Layer: a specification from OSGi Residential Group that specifies the set of
APIs that next-generation Energy Boxes will expose to provide access to physical devices through a
uniform interface.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

16	

1 Introduction

This deliverable summarises the design and the implementation of a multi-agent platform for the
optimisation and the management of the grid for based on flexibility. It is a first step towards the
development of such multi-agent holonic platform for MAS2TERING. Since this deliverable is of
Software nature, this document provides the specification details for the implementation of the multi-
agent platform and its main components by providing their design and implementation.

A holon is a self-similar or fractal structure that is stable and coherent and that consists of several
holons as sub-structures. In a holonic multi-agent system, an agent that appears as a single entity to the
outside world may in fact be composed of many sub-agents and conversely, many sub-agents may
decide that it is advantageous to join into the coherent structure of a super-agent and thus act as single
entity.

Agents are intelligent software components that can connect to hardware in order to implement
physical actions. The intelligence is assigned to these agents through models describing the
stakeholders’ business or interest in terms of: 1) objective function to be maximised or minimised; and
2) constraints that describe their business/physical models. Constraints can either be hard constraints,
which set some conditions that must be strictly fulfilled (otherwise the solution is not considered as
valid), or soft constraints, which set the costs for some conditions by penalising it in the objective
function.

Multi-agent Systems (MAS) have become popular solutions to tackle the complexity of decentralized
systems. In a multi-agent approach, each component (physical or abstract) of a system is autonomous
and can interact or communicate with their environment and with other agents via predefined
interfaces. MAS have proven to bring together many disciplines in an effort to build distributed,
intelligent, and robust applications especially for smart grid solutions. A number of prominent agent-
oriented design methodologies have been proposed in the literature and applied by practitioners.

The GAIA methodology provides methodological tools towards successfully and efficiently
implementing problem-solving MASs [1, 2]. The first phase of GAIA is the analysis, which extracts
from the system requirements: (a) the roles of the organization (including an informal description,
permissions, activities and protocols to be performed by the role) and (b) the interactions that should
be conducted (including the purpose, the initiator, the responder, inputs, outputs and processing to be
performed by the interaction). The output of the analysis phase is then used towards producing more
concrete artefacts in the design phase, which further describes the agents (types of agents in the
system), services (activities to be performed by a role) and acquaintances (describing who is connected
to whom). GAIA methodology was explained and followed in deliverable D2.2, where the agents’
roles and models have been presented.

GAIA2JADE complements the implementation-independent GAIA methodology to support MAS
development using the JADE framework [3, 4]. It adds an additional phase that follows GAIA’s
design phase, called JADE implementation. GAIA2JADE allows developing real-world MAS that had
been analysed and designed using GAIA, and that shall be implemented within JADE framework.
The JADE implementation phase provides MAS developers with systematic steps and guidelines to
produce the agents’ Java code and a repository communication protocols, the implementation of the

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

17	

activities, and agent behaviours. GAIA2JADE process was described using the Software Process
Engineering Meta-model (SPEM) proposed by the Object Management Group (OMG).

The JADE implementation process involves the developer and produces two software products: a
repository of behaviours (i.e. reusable pieces of code that can be used for devising agents or other
behaviours that extend existing ones), and the JAVA code with the agents built using these
behaviours.

Figure 2: The GAIA2JADE process and the JADE implementation process package

Following the analysis phase carried out in WP2, this deliverable uses the GAIA methodology for the
design of the MAS2TERING multi-agent framework and uses the JADE Framework for the
implementation. The mapping is performed using the GAIA2JADE methodology. The main outputs of
this deliverable are the high-level software components and the recursive and hierarchical structures
that implement the holonic approach of the multi agent platform. Mainly, these components are the
data model for defining the grid model and the ontology used for message exchange between the
agents for the smart grid, the agents and their behaviours, and the constraints.

As shown in Figure 2, from the four processes that compose the GAIA2JADE process, this deliverable
focuses on the JADE implementation process. It strongly builds on the deliverables D2.1 and D2.2 by
taking as input the requirements and the five GAIA models defined in deliverable D2.2. The output of
this deliverable is the implementation of generic high level software components (mainly the data
model, the behaviours and the agents), generic interaction protocols and the recursive and hierarchical
structures that implement the holonic approach. The software elements provided in this deliverable,
which are completed with the communication protocols defined in D5.3 and D5.4, will define the basis
for the management and optimisation algorithms developed in deliverable D3.3. This code will be
used to extend our platform components described in D2.2

To utilise the application dependent data in the agents, the domain ontology has been developed, based
on the USEF framework [5], and existing knowledge models of the domain. The data model, or
ontology, formalises the concepts and relationships in the domain; both those which constitute
message payloads between agents, and those which describe the agents themselves. This modelling is
based on existing standards, extended to the USEF framework and the MAS2TERING use cases. The
deliverable also specifies the activities refinement table, which defines the application-dependent data

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

18	

(in UML), their structure and the algorithms that are going to be used by agents in the MAS2TERING
solution

Based on the use cases defined in deliverable D6.1, the main implemented agents that are described in
this deliverable are as follows: 1) the Distributor System Operator agent (DSO); 2) the Aggregator
(AGR) agent; 3) the Customer Energy Management System agent (CEMS); and 4) Device agents
(with seven subtypes) that abstract the flexibility provided by the different physical devices. These
software elements will define the base where management and optimisation algorithms (see tasks 3.2.
and 3.3 in WP3) will be integrated. The particular algorithms and behaviours related to such
management (optimisation and prediction) algorithms will be implemented as part of future
deliverables D3.2 (i.e. prediction and forecasting algorithms) and D3.3 (i.e. optimisation algorithms).

This document is organised as follows: Chapter 2 details the background from which the specifications
for this deliverable has been obtained (USEF and MAS2TERING use cases), and the followed
methodology (GAIA and GAIA2JADE), in addition to the MAS2TERING platform, where our
solution will be integrated; Chapter 3 describes the Smart Grid model that include the CIM data
model, integrated with other standards, and the ACL messages ontology; Chapter 4, provides the
specifications for the Agents model and their behaviours; Chapter 5, describes the functions for the
physical agents of the different MAS2TERING use cases and provides their objectives and
constraints; Chapter 6 maps each agent type and behaviour to the use case in which it will be
instantiated; and finally, Chapter 7 concludes the document and briefly describes the upcoming
deliverables related to it. This deliverable is also accompanied by the software implementation of the
defined extensions of the components.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

19	

2 Background

This chapter briefly describes the context from which our specifications have been drawn. We first
summarise the agents types identified using the USEF framework (extensively described in deliverable
D1.6) and then, we briefly describe the use cases that will be developed in WP6, and where the agents
will be validated.

2.1 Agent types and roles based on USEF framework

As described in deliverable D1.6, MAS2TERING aligns with the USEF framework. USEF delivers a
common standard for flexibility market solution by defining the different stakeholders and their roles
and responsibilities. Furthermore, it ensures that the value of flexibility can be maximised and
transferred. USEF proposes the aggregator as the centre of the flexibility value chain, whose services
are provided to the Prosumer, the Balance Responsible Party (BRP), The Distribution System
Operator (DSO), and the Transmission System Operator (TSO). In MAS2TERING, we focus on the
Prosumer, Aggregator, and the DSO, for which we only consider the role of congestion/capacity
management.

Following USEF’s specifications and the GAIA methodology, we have identified four agent types and
roles, namely: Device agent, CEMS agent, AGR agent, and DSO agent. Below we show a short
description of such agents with their associated roles, whereas further details are given in Chapter 4.

Agent type Roles
CEMS The Consumer Energy Management System (CEMS), monitors, controls and

optimises the flexibility of the prosumer.
AGR The aggregator manages the flexibility produced by a portfolio of prosumers, and

tries to provide flexibility to other participants in the flexibility market. It is an
intermediate agent between the Prosumer and the DSO.

DSO The Distribution System Operator (DSO) agent implements the functionality of grid
congestion/capacity management (Other DSO roles fall outside the scope of
MAS2TERING and will not be considered).

Device This class of agents represents the controllable and non-controllable energy-
consuming and/or producing systems in the grid. Some of them can be actively
controlled to provide flexibility.

Table 1 Agent types and their roles

Furthermore, based on the USEF framework and the value chain it proposes, the interactions between
agents have been also identified in D2.2. The following table shows for each agent the other agents it
communicates with. For instance, an AGR agent may communicate with another AGR agent, a CEMS
or a DSO agent. This model can be used for identifying potential communication bottlenecks that may
arise at runtime.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

20	

Agent CEMS AGR DSO Device
CEMS X X
AGR X X X
DSO X

Device X

Table 2 Communications between agents

2.2 MAS2TERING use cases

MAS2TERING relies on three use cases that will be implemented in WP6, to test the solution
developed in the project, and assess the achievement of its objectives. In the following, we briefly
describe each of the use cases.

The first use case (UC1), focuses on the Home Area Network (HAN) and the interaction with the end-
user. The main goal is to prove the interoperability between the HAN management system, the smart
meter and a technical interface (gateway), which allows the bi-directional communication between the
end user and the rest of the actors of the low voltage grid. MAS implementation at this level focuses
on two main agents, namely: Device agent and CEMS agent. The first one is in charge of the
controllable and non-controllable devices. The second one performs the in-home optimisation,
communicates with the AGR agent and also with the real devices to get their flexibilities and send
them the control signals.

The second use case (UC2) deals instead with the local management at the district level. The objective
is to demonstrate the effectiveness of balancing and optimising (without considering grid constraints),
at local community level, as an alternative to traditional centralised optimisation. This use case
receives as input the data coming from the UC1. The local community is considered as a collection of
consumption/generation nodes that are managed by a single entity, the aggregator. The AGR agent
enables the local flexibility market by negotiating with Prosumers (via their corresponding CEMS
agents) in their portfolio regarding the use of their flexibilities to collectively optimise energy flows
without considering grid constraints (i.e. the grid capacity/congestion management capacity of the
DSO does not form part of this use case).

The third use case (UC3) is an extension of UC2; it handles the entire low voltage grid as the union of
many local communities in a given area. This use case involves the DSOs, and intends to demonstrate
that the local optimisation enabled in UC2 may be a cost-effective way to deal with local congestions
and globally increase the grid performance, its reliability and resilience. The DSO agent is added to
MAS system for this use case. In case of expected congestion, the DSO agent initiates negotiations
with local AGR in the area to procure flexibility.

2.3 Methodology

One of the main results from WP2, and in particular in deliverable D2.2, is the decision of using
GAIA as a methodology for designing MAS2TERING agents and the use of Java Agent Development

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

21	

Framework (JADE), as a framework for implementing them. In this deliverable, we apply the
GAIA2JADE process to convert from the identified models into the real MAS implementation.

GAIA is a methodology for the analysis and the design of the multi-agent systems [2, 1], whereas
JADE2 is an open-source software platform developed by Telecom Italia Lab (TILAB) in Italy, and
distributed under the terms of the Lesser General Public License (LGPL). JADE is a middle-ware
(written entirely in the JAVA language), which simplifies the implementation of multi agents by
providing a set of graphical tools that support the debugging and deployment of agents. More
information on JADE can be found in [3].

Another advantage of combining the GAIA methodology and the JADE platform is the large amount
of research and work in the literature that focuses on mapping from one to another; i.e., there are few
works that studied how to translate the GAIA model to the JADE platform, in the so-called
GAIA2JADE process [1, 4]. This is achieved by specifically focusing on the JADE platform in the
design phase, whereas the designer can move straight forward towards the implementation, without
having to adapt the results of the design phase.

We follow the GAIA2JADE process for implementing the GAIA models, which are defined in D2.2
using the JADE framework that is chosen in MAS2TERING as underlying MAS platform. The
GAIA2JADE process aggregates four process packages. In this deliverable, we focus on the JADE
implementation process. This process involves the developer role and produces two products (i.e.
outputs of this deliverable), namely: the Java code and the repository of behaviours. Notice that JADE
behaviours are reusable pieces of code (components) that can be used for building agents or other
complex behaviours.

In the GAIA2JADE process, all the GAIA responsibilities (i.e. activities and protocols) that are
defined in the role model are transformed into MAS2TERING behaviours3. The transformation
process is as follows:

1. Define the behaviours corresponding to the activities field in the role model
2. Define the protocol behaviours corresponding to the protocols field in the roles model
3. Link the defined agents with their behaviours. For this purpose, the developer shall use the

setup method in the Agent class by invoking all the methods (GAIA activities) that are
executed only one time at the beginning of the top responsibility. It also initialises all agent
data structures and adds all behaviours of the lower level in the agent scheduler.

																																																													
2 http://jade.tilab.com/

3 Activities and protocols can be translated to JADE behaviours, to action methods (which will be part of finite state machine
– FSM like behaviours) or to simple methods of behaviours.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

22	

Figure 3 GAIA2JADE definition of JADE behaviours and agents implementation process [1].

This deliverable defines the activities refinement table, including application-dependent data, their
structure and the algorithms that are going to be used by the agents are defined. Then, we define the
JADE behaviours and the agent classes following the corresponding GAIA2JADE process illustrated
in Figure 3.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

23	

2.4 MAS platform

The MAS platform, which has been described in the deliverable D2.2, is extended to include the
MAS2TERING solution. In this chapter we give a brief description of the main components of the
platform and provide more details on the interfaces, classes and relationships that are specifically
developed to cope with the MAS2TERING project within each component.

The platform is built upon a component-based architecture to enable clear separation between the
different components; i.e., each one represents a reusable component that is composed of a collection
of conceptually related classes, which implement specific functionality and provide services to the
other ones. These components are illustrated in Figure 4 and are as follows: the user interface, the
Smart Grid model component, the agents’ model component, the constraints and objectives
component, communication protocols component, the security component, and a utility component.

	

Figure 4: MAS platform architecture

The following subsections briefly describe each of the components of the MAS platform architecture,
and focus on the components that have been extended to build the MAS2TERING multi-agent based
solution. These components are: the Smart Grid model component, the Agents model, and the
Constraints and Objectives component. The extension of the communication protocols is described in
D5.3 and implemented in D5.4, whereas the extension of the Security component is described in D4.2.

2.4.1 User interface

This component provides a graphical user interface (GUI) to show a 3D graphical and interactive
interface of the grid. It displays CityGML information in 3D, a 2D model of the grid, and real time
information from the agents, by means of a multilayer representation. A factory class is used to create
the entities that represent the components that are part of the grid, place them on the CityGML map,
and to connect them with their agents in the MAS model. Furthermore, it creates an information panel
for each of them in order to display the information and events on real time using user-friendly
reporting tools. Such tools allow colour-stated visualisation on a map of the entire network, including
some metric parameters for statistical and historical reporting.

2.4.2 Smart grid model

As described in D2.2, this component contains all the classes for defining the physical components
and characteristics of a power grid (The Smart Grid model) in the scope of the project and the

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

24	

ontology used for message exchange. Based on this component, the user is expected to define the grid
model by using the user-defined profile.

2.4.3 Agent model

This component implements the kernel of the platform, the distributed run-time environment that
supports the entire platform and its tools. Many of the functionalities of this layer will be relying on
the JADE framework. The view of agents in the MAS2TERING solution is based on following
definition:

An agent is an intelligent software component that exhibits the following properties:

• Autonomy: each agent is independent of other agents and has (some kind of) control over its
actions and internal state to achieve its individual goals without any direct intervention of
humans or others.

• Social ability: each agent interacts with other agents (including also humans and other third-
party software) via some kind of agent communication language in order to
negotiate/cooperate/compete to achieve its goals (i.e. goal-directed behaviours).

• Reactivity: agents perceive their environment and respond in a timely fashion to changes
occurring therein (i.e. an agent may be possible connected to hardware in order to implement
physical actions).

This particular view of agents is the only assumption for analysis, while the design is specific to the
JADE platform, which is a FIPA-compliant realisation of the above vision. To be able to realise that
vision, MAS2TERING uses a model for each agent that contains: its goals (via constraints and
objectives), its actions (via behaviours) and its interactions (via agent protocols).

Figure 5 View of core classes of the MAS level

As described in deliverable D2.2, in the core of the MAS component, there is the agent class defined
by the JADE framework. An agent is viewed here as a thread associated to a mailbox that you want to
enhance with behaviours. A behaviour can be viewed as a method which defines when it should be
executed, take the state of the agent as argument, execute some actions and return whether it should be
kept running or being stopped (c.f. Behaviours section). When assigned to the agent, the behaviours
will have access to certain functionalities of the agent that owns them. Those reflective functionalities
include identifying the agent, sending messages and parsing the mailbox.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

25	

By using the static methods of the ‘AgentFactory’, it is possible to build a JADE Agent from an
AgentSpecification that contains the set of behaviours that the agent will include. The factory allows
starting JADE and launching a MAS system from the Collection of AgentSpecifications objects (c.f.
Figure 5).

2.4.4 Constraints and objectives

This component includes the necessary classes for modelling the constraints used to define the
restrictions of a grid component, of agents, and of their objectives. Each agent needs a way to
represent its goals, which are based on its individual interests (e.g. balance for distribution operators;
reduction of generation price for producers; reduction of consumption and comfort maximisation for
consumers, etc.).

2.4.5 Communication and Protocols

This package contains all the classes that provide support for implementing standard interaction
protocols in MAS2TERING. With exception of some functionalities for which an agent will not
require communication with other agents (i.e., the so-called agent activities in the GAIA role model),
the rest of agent´s behaviours will be implemented as a part of a multi-agent interaction protocol.
Examples of protocols are auctions, subscriptions to receive notifications, negotiations and a large etc.

JADE defines some basic protocols. However, MAS2TERING will need to enhance existing protocols
and create new ones to be able to fulfil the projects requirements. In this section we describe the main
building blocks necessary to define such protocols, whereas the particular definition of the protocols
for MAS2TERING shall be defined in the deliverable D5.3 and implemented in the deliverable D5.4.

When participating in a conversation driven by an interaction protocol, an agent can play either the
initiator or the responder role. Consequently, classes in this package are divided into initiators and
responders. For instance, following a protocol of subscription we have the SubscriptionInitiator and
the SubscriptionResponder and so on. Playing a role in a conversation, no matter if it is the initator or
responder role, implies executing a task of some sort and thus all protocol classes (both initiators and
responders) are behaviours. Both protocol classes are implemented as subclasses of FMS-Behaviour
and each callback method is invoked in a dedicated state of finite state machine. This implies that an
agent that is going to execute some protocol (as for example the DistrictManagement agent) will
contain the FlexibilityNegotiationInitiator as part of its behaviours.

Complex multi-agent interaction protocols can be built with nested protocols. For each protocol we
may need to define a set of specific messages that relate to this protocol, the protocol may be
associated to a particular ontology and a particular language. This package will be extended in
deliverable D5.4, based on the communication specification in deliverable D5.3.

2.4.6 Security component

This component includes the classes necessary for authentication of the agents in the MAS platform,
and the message encryption, necessary for the communication between the agents. The contents of this
component are briefly described in D2.2, and are defined in more details in deliverable D4.2.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

26	

2.4.7 Utilities component

The utility and services classes that can be used by the other components are included in these
components. It is composed of four sub-components, namely: the connecters that include connectors
for different toolkits and simulations tools; the loggers that includes the classes necessary for event
registration, by means of loggers; the information fusion subcomponent that deals with different data
models and allow merging and wrapping data; and the utils, that includes utilities such as file readers
and some statistical utilities.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

27	

3 Smart Grid Model
As described in D2.2, this component contains all the classes for defining the physical components
and characteristics of a power grid (The Smart Grid model) in the scope of the project and the
ontology used for message exchange. Based on this component, the user is expected to define the grid
model by using the user-defined profile. For this deliverable, we have extended this component by
defining the MAS2TERING data model that defines the common expression of information exchange
between MAS2TERING agents in the different use cases and the Demand Side Management. This
data model follows the elicitation of the domain knowledge through each use case, and it is aligned
with relevant standards (in particular with FIPA-ACL, Energy@Home, CIM, IEC 61968 and
OpenADR).

A common data model is required in MAS2TERING for the common expression of information
exchange between participating entities. Instead of multiple ad-hoc mapping and conversion processes
between arbitrary models, participants will either use the common model internally or map their
internal model to a common schema. The common ontology will be used for formulating messaging
data structures for syntactical and implied semantic compatibility between entities for the support of
upper business processes. The common schema will use constructs from current standards. Three
primary standards have been identified for their usage, with varying relevance across the use cases,
namely: the IEC 61970 standard for modelling the electrical domain, the OpenADR standard for
modelling demand response within the Smart Grid, and the Energy@Home standard for domestic
conceptual modelling.

Due to the predominance of multi agents in the MAS2TERING platform, the primary usage of the
data model is to formulate the contents for those messages, independent of the protocols. As such, the
conceptual modelling will result in an ontology suitable for use within JADE. This will extend JADE’s
Base Ontology Java class to formalise a vocabulary, as well as descriptions of the concepts, predicates,
agent actions, and data slots relevant to the domain. In addition, schemas will form the ontology
metadata attributes of those messages, and the schemas will be generated from defined custom
contexts applied to the base models. Both extending JADE’s Base Ontology and defining and
registering the schemas can be achieved by using JADE BeanOntology, assuming that concept,
predicate and agent action beans have been produced first.

High level descriptions of the main constituent standards used are outlined below together with a
description of their scopes, followed by a simple methodology used to derive the implementation
artefacts, the results of the use case based elicitation, the resultant ontology, and its alignment with the
relevant standards.

3.1 The CIM

The Common Information Model (CIM) consists of three-layered parts published as a reference model
by the working group TC57, which is in turn based on the United Nations electronic exchange
standards. At the Smart Grid component, there is the UML class model capturing entities and their
attributes and relationships between entities, including specialisation and association, together with
further constraints such as cardinality in associations. The domain described by the model is wide such
that is able to support a diverse range of systems and processes including network management,

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

28	

outage management, work management, compliance checking, asset management, business process,
customer information, risk analysis, planning activities among others. The standard therefore models
entities such as electrical infrastructures, topology, power grid assets / equipment, geo-spatial / GIS,
facility management, cross-cutting those areas with support for engineering, operations, maintenance,
quality and operations for a range of stakeholders.

The upper layer information model of CIM is composed of four parts, developed by working groups
WG13 (IEC 61970) and WG16 extension, WG14 (IEC 61968) and WG15 (c.f. Figure 6). WG13
contains the model common core and other central packages including those called wires and topology
describing the connection of the grid infrastructure, its assets, and measurement and generation
concepts. It is extended in WG16 by describing marketing aspects and including support for bidding
and security constraints. Figure 4 shows WG14, which covers the functional and operational activities.
WG15 contains business oriented models covering market operations, energy scheduling, financial
interests.

Regarding interfaces, IEC61970 part 4xx is a series of Component Interface Standards (CIS). The CIS
is a functional specification that applications should implement in order to comply with standard
messages exchange. A further related standard is part 5, which specifics message realisation while
additionally IEC 61968-1 describes an interface reference model (IRM). The scope of those message
exchange formulations is likely to cover FIPA-ACL message content in MAS2TERING but the extent
of stack layering that will be utilised form the standards is not yet clear.

Figure 6: Main WG14 / IEC 61968 CIM packages

The middle layer of the CIM defines the context and subsets of the base model that can be used for
message exchange. The profile instances define which parts are mandatory and which are optional,
and can specify constraints on the base information but cannot add to the information model (for that
purpose the base model has to be extended).

Finally, the lower part of the CIM is an implementation specification that defines the implementation
resources. For this work package, the implementation artefacts will contain the specifications for the
syntax and the serialisation for the contents (‘payload’) of the messages used in communications

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

29	

between entities. Possible schemas to be used are the XML Schema (XMLS) and the RDF Schema
(RDFS). XMLS offers a simpler implementation, while RDFS gives the potential for a richer capture
of explicit semantics. RDFS introduces the constructs: resources, properties and relations as well as
namespaces and URIs etc. As well as the use of RDFS for custom implementation, models such as the
Web Ontology Language (OWL) could be used for which several reasoners and editing tools are
readily available. In addition to message contents schemas, overlapping with the other project work
packages, other schemas can be generated, such as the schemas for databases or internal agent models.
The transformation of the class models to payload or other contents is the main purpose of this layer
resulting in a ‘trimmed’ and modified class structure. Such transformation can involve the
modification of associations to aggregations and the removal of superclass definitions where that
information is known to participants.

The derivation of the profile is use-case driven, iterative and incremental as implied in the figure.
Typically, the process is driven by UML sequence diagrams generated from use cases, but essentially
anything that conveys the nature the interaction to be supported is adequate. That specification is the
elaborated and transformed as outlined above to generate a version controlled schema instance. As is
typical of iterative software development processes the profile generation methodology includes a
‘feedback’ loop and this is expected to be a central concern in MAS2TERING as exchange
requirements emerge during the project lifecycle.

3.2 The OpenADR

The OpenADR (Open Automated Demand Response) standard targets the interoperation and
automation of applications concerned with integrating consumer, supplier and aggregator demand and
response (of electrical energy supply) information in order to better manage the resources from several
perspectives including economy of cost and resources, business models, availability and other
concerns. Its coverage is as well as specifying a data model, describes the communication mechanisms
between the participating entities which are servers that publish information (referred to as Virtual Top
Node) and consumers that subscribe to information supplies (Virtual End Nodes). However, the data
model is independent of the transport specifications. The standard consists of a profile specification
and a schema. The data model described by OpenADR is the primary resources of interest to
MAS2TERING, primarily focusing on the schemas (although the security framework utilising Public
Key Infrastructure certificates may be of interest to other work packages). The model addresses energy
reduction and shifting strategies which is a central concern in the project. In particular, the
formalisations for the following, a subset of OASIS EI Version 1.0, are likely to be of interest:

1. market context
2. event descriptions
3. dynamic pricing
4. availability and related constraints
5. pricing strategies
6. opting in and out of schedules

The event model from the OASIS EI v1.0 standard corresponding to the OpenADR event schema is
illustrated in	OpenADR 2.0a Profile Specification document.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

30	

Some automated support for MAS2TERING data model merging with the other UML data models
may be feasible using XSLT transformation scripts and an appropriate transformation engine.

3.3 Energy@Home data model

The Energy@Home data model specifies a representation model for home area networks, based on the
CIM approach (through its evolution into the SEP2 model), and it is broadly aligned with the
OpenADR schema. The specification includes the concepts regarding smart appliances, renewable
energy generation, smart meters and smart user interfaces. For this reason, the Energy@Home
specification is similar in scope to use case 1 of the MAS2TERING project. The data model describes
the device properties and the properties of the device functions that are used to provide the user
interfaces similar to the one shown in Figure 7.

	

Figure 7: Smart appliance user interface based on the Energy@Home model

As well as the ‘static parameters’ related to device properties, Energy@Home also formalises a
method of describing devices’ energy consumption profiles in terms of energy phases, modes, power
profiles and extended profiles. This is highly relevant to the MAS2TERING project, as permutations
of modes and profiles would facilitate the concept of flexibility by curtailing or deferring load. An
energy phase is the atomic component of an energy schedule; whereby a phase represents a sub
process performed by an appliance, such as a pre-wash cycle of a washing machine. A mode is then a
collection of phases, and represents one method of completing a function of an appliance, such as a
wash cycle with a set temperature, for a washing machine. A power profile is then a task that the
appliance performs, which can be accomplished through various modes. An extended power profile is
then a collection of power profiles, such as a wash-dry program for a washing machine. This is
presented visually in Figure 8.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

31	

	

Figure 8: Breakdown of energy profile objects and properties in the Energy@Home data model

As outlined, the CIM (and IEC 61968 CIM extension) will be the central resource extended in the
framework by other models. The layered structure is shown in Figure 9. The roles of the different
layers have been described above and the manifestation of the model and syntax layers is respectively
UML class model and XML Schema (XSD format). The context layer manifestation is again a UML
model but is the specification of a subset and in canonical form. Additional constraints may be
specified using UML constructs.

2
1

TRUE
3
0

900

0 1 2
1 1 1
2 2 2

EnergyPhaseID 1 EnergyPhaseID 1 EnergyPhaseID 1
MacroPhaseID MacroPhaseID MacroPhaseID
Expected	Duration	[min] 15 Expected	Duration	[min] 30 Expected	Duration	[min] 25
Energy	[Wh] 300 Energy	[Wh] 300 Energy	[Wh] 300
Peak	Power	[W] 1200 Peak	Power	[W] 600 Peak	Power	[W] 720
Max	overload	pause	[min] 10 Max	overload	pause	[min] 10 Max	overload	pause	[min] 10
Max	delay	[min] 5 Max	delay	[min] 5 Max	delay	[min] 5
Max	ant.	[min] 10 Max	ant.	[min] 10 Max	ant.	[min] 10
EnergyPhaseID 2 EnergyPhaseID 2 EnergyPhaseID 2
MacroPhaseID MacroPhaseID MacroPhaseID
Expected	Duration	[min] 45 Expected	Duration	[min] 45 Expected	Duration	[min] 45
Energy	[Wh] 0 Energy	[Wh] 0 Energy	[Wh] 0
Peak	Power	[W] 0 Peak	Power	[W] 0 Peak	Power	[W] 0
Max	overload	pause	[min] 0 Max	overload	pause	[min] 0 Max	overload	pause	[min] 0
Max	delay	[min] 5 Max	delay	[min] 5 Max	delay	[min] 5
Max	ant.	[min] 0 Max	ant.	[min] 0 Max	ant.	[min] 0

2
2

TRUE
0

480

0 1
1 1
2 2

EnergyPhaseID 1 EnergyPhaseID 1
MacroPhaseID MacroPhaseID
Expected	Duration	[min] 15 Expected	Duration	[min] 8
Energy	[Wh] 150 Energy	[Wh] 80
Peak	Power	[W] 600 Peak	Power	[W] 600
Max	overload	pause	[min] 10 Max	overload	pause	[min] 10
Max	delay	[min] 5 Max	delay	[min] 5
Max	ant.	[min] 10 Max	ant.	[min] 10
EnergyPhaseID 2 EnergyPhaseID 2
MacroPhaseID MacroPhaseID
Expected	Duration	[min] 45 Expected	Duration	[min] 30
Energy	[Wh] 0 Energy	[Wh] 0
Peak	Power	[W] 0 Peak	Power	[W] 0
Max	overload	pause	[min] 0 Max	overload	pause	[min] 0
Max	delay	[min] 5 Max	delay	[min] 5
Max	ant.	[min] 0 Max	ant.	[min] 0

M
od

es

Mode	0 Mode	1 Mode	2
MODE	ID

Repetition	number
Phases	number

MODE	ID
Repetition	number
Phases	number

MODE	ID
Repetition	number
Phases	number

Ph
as
e	
1

Ph
as
e	
2

Phase	1

Phase	2

Phase	1

Phase	2

Power	Profile	Number
Power	Profile	ID

Mix	enable
Alernative	modes	number

Min	Power	Profile	Delay	[min	from	prev	end	time]

MODE	ID

Power	Profile	ID
Mix	enable

Alernative	modes	number
Min	Power	Profile	Delay	[min	from	prev	end	time]

Duration	[min]	{optional}

Phase	2 Phase	2

Po
w
er
	p
ro
fil
e

M
od

es

Ex
te
nd

ed
	P
ow

er
	P
ro
fil
e

Repetition	number Repetition	number
Phases	number Phases	number

Phase	1 Phase	1

Duration	[min]	{optional}

Po
w
er
	p
ro
fil
e

Mode	0 Mode	1
MODE	ID

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

32	

	

Figure 9: MAS2TERING model layers (based on Xtensible Solutions presentation)

In the scope of the base model formulation, when multiple models are integrated, inevitably, overlaps
are expected. Ideally, the development of a meta-model would address the formalisation and the
mapping of consistent theories and concepts but this is beyond the scope of this project. Instead, the
approach here will be the pruning of models in the profile and nomination of resources via multiple
name spaces and appropriate translation and mapping if necessary.

For the first iteration of a MAS2TERING data model the following domains have been identified for
inclusion:

1. Temporal model, time series
2. Load profile, load descriptions (optimisation and simulation), consumption profile,

aggregated profiles
3. Flexibility parameters, flexibility bid description
4. Device characteristics e.g. charge / discharge plan, device availability
5. Demand / response

However as previously described, the ontology model development process is iterative and will
evolve, driven by use cases so the conceptualisations and theories modelled, extending the domains
above.

Following a thorough analysis of the standards outlined previously, these were then federated
manually (and automatically where the normative file formats allowed) into ontological
representations using OWL constructs. Subsets of these ontologies were then aligned and extended to
fully model the MAS2TERING domain. The main areas of extension regarded optimisation, device
types and descriptions, demand response and load control. The results of this use case based elicitation
are presented in the following sections followed by the resultant ontology.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

33	

3.4 Use case based description logic elicitation

Based on the methodology’s use-case driven approach to elicit a lightweight ontology aligned with
existing standards, each use case was considered in turn, with concepts and relationships and
properties being elicited to satisfy its exchange requirements. These were then compared to existing
standards to determine potential alignments before formalising the MAS2TERING ontology. This
analysis is now briefly presented for each of the use cases defined in deliverable D6.1.

- Use Case 1 – Domestic demand optimisation

The primary existing standard relevant to this use case was the Energy@Home data model described
previously, as both Device and CEMS agents exchanging messages within the context of this use case
would be exchanging content regarding the HAN. The CIM specification and IEC 61968 formalize
schemas for the exchange of messages regarding the network, and contain few concepts relevant to the
HAN. Those concepts which they do model are aligned with in the OpenADR and Energy@Home
schemas, the latter of which is also broadly aligned with the former.

- Use Case 2 – Aggregation of Dwellings

Use case 2 aims to utilise the flexibility offered by consumers through possible deferment and
curtailment of loads at the multi-building level, by trading this flexibility with an aggregator agent.
The aggregator agent receives a P-plan from each CEMS and buys the required flexibility based on
user constraints. Aggregator agents are then able to trade flexibility between each other and relay these
requests to CEMS agents. Beyond the concepts modelled for use case 1 then, use case 2 requires the
modelling of multi-home concepts, and flexibility concepts, in a formal manner. This extends the
scope of the ontology to overlap more significantly with those of the OpenADR and CIM standards,
and so this overlap and resultant alignment will be relevant in use case 2.

- Use Case 3 - Coordination of aggregator agents

Use case 3 aims to reduce the number and impact of congestion points within a low voltage grid
through the introduction of the DSO and using the FIPA’s agent called Directory Facilitator (DF), in
which agents wishing to advertise their services register (also called yellow pages). These agents
exchange knowledge regarding the connections and congestion in the network with the aggregators,
who then trade flexibility in order to improve the efficiency and resilience of the grid. Beyond the
concepts modelled in use cases 1 and 2 then, use case 3 requires the modelling of connections and
congestion points, as well as DSOs and further modelling of flexibility. As the concept of flexibility is
central to the approach, a clear understanding of its definition and a thorough formalisation of its
nature is required. The following section therefore briefly presents the perspective utilised when
trading flexibility.

3.5 Domain perspective of energy flexibility

Load flexibility is here defined as a market commodity of utilised peak load reduction through
optional deferment and/or curtailment of consumer demand, expressed as a unit of energy. Deferment
is the shifting of a load to a time more favourable to the network operator, where the amount of

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

34	

flexibility is equal to the amount of energy shifted. In this way, the extent of the shift is independent to
the flexibility, as the consumer sets a deadline for the task completion. This is represented in Figure	9
below, when Qtot is the total energy consumption of the task, Qf is the flexibility utilised, t0 is the
earliest start time of the task, t1 is the task completion deadline, and Tmin is the minimum amount of
time the task requires to be completed.

Figure 9 Ontological perspective of load deferment. Left - desired load, right - deferred load

Curtailment of load is then the supply of a quantity of energy over time which is less than the desired
quantity. The flexibility is then the difference between the desired quantity and the supplied quantity,
again expressed as an amount of energy. This is shown in Figure 9 and Figure 10, where t0 is the
earliest start time of the task, t1 is the non-negotiable deadline of the task, Qf is the amount of
flexibility utilised, and Pmin is the minimum amount of energy to be supplied (such as when a heating
device must meet a minimum room temperature).

Figure 10 Domain perspective of load curtailment. Black profile - desired load, red line -
curtailed load

Based on the use case analyses and the definitions of flexibility presented, devices were then
categorised according to their likely flexibilities and types of variability. Of course, the actual
flexibility offered for any appliance will be decided by the consumer’s preferences, as well as the
appliance’s technological capabilities.

Table 3 Classifications of likely flexibilities of devices

 Non-interruptible Interruptible Variable Profile
Curtailable N/A N/A Electric heater

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

35	

Deferrable Washing machine Dishwasher PEV, electric oven, tumble
dryer, kettle

Fixed Freezer, fridge, lights N/A N/A

3.6 Candidate generic domain ontology - OWL constructs

Following the elicitation of domain knowledge through the use-case and the standards-analysis driven
process, the resultant knowledge was formalised in description logic using basic OWL constructs so as
to produce a candidate ontology, generic across potential implementations. This was conducted in the
Protégé software, and serves to produce an ontology with value outside of its MAS application, as it is
also suitable for web service deployment, or direct use in a C++ or Java program through a relevant
OWL library. This was then extended with more application-specific knowledge, which served to
couple the ontology closely with the agents and protocols described in this deliverable, and in D5.3.
The generic ontology is presented first using OWL constructs due to their likely familiarity to the
intended readership of ontological modellers, then the extended ontology is presented, including its
coupling with MAS2TERING protocols, and finally in the JADE format utilised in MAS2TERING.
Given the difference in nature between the data schemas which these standards present and that of a
JADE ontology, the federation and re-use approach adopted represents a best-case for future
compliance with existing standards if they are expressed normatively in an ontological format in the
future. Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15 present the main concepts and the
relationships formalised in the generic ontology, and the data properties of these concepts.

Figure 11 Full generic OWL model class list

CEMS	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

36	

Figure 12 OWL MVD focusing on energy scheduling concepts

Figure 13 OWL MVD focusing on device concepts

Figure 14 OWL MVD focussing on economic concepts

CEMS	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

37	

Figure 15 Generic OWL model data property specification

3.7 Candidate protocol payload ontology – OWL constructs

Following the process of formalising a generic domain ontology aligned with existing standards, this
was then extended to closely couple with the requirements of the MAS2TERING agents and protocols
specified. This involved formalising concepts, which would not themselves be included in message
payloads, but which would be necessary to contextualise the domain fully from the perspective of the
agents. Primarily, the agents themselves, as well as the message payloads, were described as classes
with required properties, resulting in 216 named concepts. This full class hierarchy is presented in
Figure 16 below, along with an example of the required property descriptions for the new classes.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

38	

Figure 16: Full class list for MAS-coupled ontology, and example of class property specification

3.8 Candidate ontology - JADE constructs

In order to utilise the ontology to formalise the semantics of FIPA-ACL encoded payloads, the OWL
candidate ontology was converted into a set of JADE concepts and predicate bean classes. This
process has been automated by combining Apache Jena (to interpret the OWL file expressing the
candidate ontology) and Eclipse JDT (to manipulate Java source code). The JADE bean generation
process is detailed in MAS2TERING deliverable D5.3. Annex B.1 provides more information on the
conversion process.

3.9 Alignments with existing standards

Alignments with the existing standards have been formalised as OWL annotations, as presented in
Figure 17, Figure 18, and Figure 19 below. Whilst it would be incorrect to state that this represents full
compliance or alignment with the standard (as this would require further testing and refinement), it
demonstrates broad coherence with the domain perspectives of the existing standards, and paves the
way for genuine compliance if the existing standards are developed into full semantic models in the
future.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

39	

Figure 17 Alignment of ontological concepts with IEC 61968-9

Figure 18 Alignment of ontological concepts with CIM

CEMS	
CEMS	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

40	

Figure 19 Alignment of ontological concepts with Energy@Home

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

41	

4 The Agents model

The MAS2TERING platform will perform as follows: (1) the aggregation of atomic ‘Behaviours’ into
the AgentSpecification, (2) using the factory to build the final JADE agent from the Agent
specifications, and (3) Launching the JADE Agents objects within the platform with the Factory.

The agent model is extended by modelling the specific requirements extracted from both: the USEF
framework and the use cases. We start by defining the types of agents and their roles that will be
defined in the management system. The description tables of the four types of agents and the seven
subtypes, which will be used for testing the three use cases, are presented following this template:

Agent class Agent type name as specified in D2.2
Subtype Agent subtypes (if any)
Description Textual description of the role that the agent plays
Finite State
Machine (FSM)

A high-level visual representation of the behaviour of the agent is
represented using a Finite State Machine. Figure 20 shows a legend for the
created Finite State Machines. More details about how to read and
understand FSMs is provided in Annex A.1.

	

Figure 20: Overview of the FSM components and used syntaxes

Table 4 Agent type description template

In the following tables, we provide the description of each of the agent types and subtypes.

4.1.1 Distribution System Operator (DSO) Agent

Agent class name Distribution System Operator (DSO)
Subtypes --
Description The DSO is responsible of the cost-effective distribution of electricity to end

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

42	

consumers within statutory limits for the region of the distribution grid for
which it is responsible (See D1.6). However, due to simplicity purposes, the
DSO agent of the designed MAS system for MAS2TERING will only
provide the functionality for managing the grid congestion.

During the planning phase the DSO will publish the locations in the grid
where overload may occur (i.e. based on its analysis of the trends in energy
flows in its grids). After this, the DSO mainly participates in the validate
phase, in which it takes place the alignment Aggregator/DSO. In more detail,
the DSO whether the demand and supply of energy can be distributed safely
without any limitations based on the received D-prognoses from AGRs. If
congestion is expected to occur, the DSO procures flexibility from AGRs to
solve the grid capacity issues.

The following FSMs show: a high-level FSM (DSOBehaviour), which is
composed of the lower-level FSMs illustrated (DSO Plan, DSO Validate, and
DSO Operate).

Finite State
Machine

	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

43	

	

	

	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

44	

4.1.2 Aggregator Agent

Agent class name Aggregator (AGR)
Subtypes --
Description The role of the aggregator is to manage the flexibility produced by a portfolio

of prosumers. Aggregators compete to each other to provide flexibility to
other participants in the flexibility market (i.e. DSO, other aggregators) (see
D1.6). To do this, the aggregator participates in the following phases:
Plan: The plan phase starts when the aggregator collects P-plans from the
prosumers it is representing. Then, the aggregator optimises its portfolio
based on its client needs and provides an A-plan which is the expected
consumption profile during the day of delivery of the portfolio of prosumers
of the aggregator.
Validate: The aggregator sends/updates a D-prognoses per congestion point
to the DSO. The aggregator handles flexibility requests from the DSO
entering into negotiations to provide flexibility from its portfolio.
Operate: The aggregator adheres to its D-prognoses and A-plans. To do this,
the aggregator needs to monitor the P-plans of their prosumers, and if any
change in the forecast is detected, it has to process the corresponding affected
plans.
In the following, a high-level FSM shows the aggregator phases (AGR high
level FSM). Each hierarchical FSM is then illustrated (AGR plan FSM, AGR
Validate FSM, and AGR Operate FSM) .

Finite State
Machine

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

45	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

46	

4.1.3 Consumer Energy Management System (CEMS)

Agent class
name

Consumer Energy Management System (CEMS)

Subtypes --
Description The CEMS controls and optimises the flexibility of the prosumer. It aims at

minimising the corresponding prosumer energy bill (i.e. it carries out an internal
optimisation behind the meter). To do this, the CEMS has access to all the devices
of the corresponding prosumer as well as to the tariff that the prosumer contracted
with the supplier. The outcome of this is twofold: the configuration of the
controllable devices and the prosumer energy consumption plan (the P-plan). The
in-home optimiser can minimise the bill by using flexibilities to perform TOU
optimisation, controlling the maximum load or apply a self-balancing.
In case that the prosumer subscribes to an AGR, the CEMS serves as a first
aggregation level being in charge of communicating the P-plan to the AGR and
handle messages of offers for flexibility from the AGR in order to consider them in
the in-home optimisation when updating P-plans. A CEMS is a logical entity and
not necessarily a physical device.
The CEMS is also in charge of realising the agreed P-plan when entering the
corresponding Operate phase by sending the corresponding control signals to the in-
home controllable devices (i.e. executing all the corresponding flexibility orders).

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

47	

Finite State
Machine

Figure 21. FSM CEMS agent

4.1.4 Device Agent

Agent class
name

Device

Subtypes Curtailable Load, Deferrable Load, Fixed Load, Generator, Transmission Line,
Battery, External Tie

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

48	

Description It represents the energy-consuming and/or producing/storage end-systems that can
be actively controlled or not.
This agent defines a set of flexibilities by using its device model constraints, user
settings and the forecasts (when applicable).
Devices interact with CEMS to provide it their flexibilities.
Flexibility of a non-controllable device is assumed as a fixed power demand curve
subject to some constraints.
In case of self-controlled devices, the flexibility may be a flexible regime in which
the device can work, for instance to shift, increase or decrease their energy
consumption or production. They also present another interaction in which CEMS
sends the devices the control signals for setting up their actuators.

Finite State
Machine

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

49	

Figure 22. FSM Device agent

The Device Agent is the only one that needs a more specific definition based on each kind of device.
Since it represents the physical devices of the power grid, each of them with its own specification and
constraints, several agents’ subtypes that extend the Device agent must be defined. We identified and
modelled one agent per physical device of the grid. More precisely, seven agents are needed for testing
the three use cases defined for MAS2TERING project. Figure 23 shows the UML diagram of these
agents:

Figure 23 Agents hierarchy in JADE

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

50	

Next subsections provide a short definition for each of the subtypes of Device Agents that can be
extracted from the Smart Grid model defined for MAS2TERING project and that will be used in the
use cases. The constrains of each device subclass are described inside the constraints and objectives
component of the MAS platform (Chapter 5).

4.1.4.1 Generator

A generator is a single-terminal device that supplies power to the grid. It works with a power schedule
and generates power within a range and may have a limit for changing power levels from one period to
the next.

4.1.4.2 Curtailable Load

A curtailable load is a single-terminal device that has a desirable load provide and a real power load. It
penalises the energy shortfall between a desired load profile and the delivered power. Some device
extensions may include time-varying and nonlinear penalties on the energy shortfall.

4.1.4.3 Deferrable load

A deferrable load is a single terminal device that requires its execution to be done by a certain time
specified by the user. MAS2TERING defines different subtypes of deferrable loads depending on: (i)
if the corresponding appliance can be stopped once started; and (ii) the way that it is specified the
appliance power consumption profile (i.e. if it needs to match particular power consumption profile or
it just must consume a minimum amount of power over the given interval of time) .

4.1.4.4 Storage

A battery is a single terminal device with power schedule, which can take in or deliver energy,
depending on whether it is charging or discharging.

4.1.4.5 Fixed load

A fixed energy load is a single terminal device with zero cost function which consists of a desired
consumption profile that must be satisfied in each period. It does not provide any flexibility and
cannot be controlled.

4.1.4.6 External tie

An external tie is a single terminal device that represents a connection to an external source of power.
In MAS2TERING these external ties are used to represent the individual tariffs that each home owner
has with the utility. Such tariffs are represented as external ties since the price of energy is fixed for
the tariff contract and independent of the prices given to participate in the local flexibility market.

4.1.4.7 Transmission line

A transmission line is a device with two terminals (i.e. two power schedules) that transports power
across some distance. It works at the distribution level and may carry some energy losses.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

51	

4.1.5 Behaviours

In the following, we provide a list of behaviours that are used by the agents in this component of the
MAS platform. The behaviours are defined by extending the existing behaviours in JADE, which are
shown in Figure 24. The figure shows the main classes in the Behaviour package: each behaviour can
be viewed as a coherent, potentially complex ability that provides the agent with a certain functionality
(e.g. deliberating for solving a given type of problem, interacting with other agents using a given
protocol, using external application Matlab, etc.). As far as possible, a behaviour is defined relatively
independently of the other behaviours. If dependencies are needed, dependent behaviours are
preferably being related by a composite behaviour (e.g. first receive new flexibility, then perform local
optimization), by exchanging information through agent memory (e.g. compute a PPlan in a first
behaviour and then send it in another) and possibly by “causing” external influences (e.g. send request
for PPlan in a first behaviour and then receive incoming PPlans in a second) (complex behaviour).
Thus, each behaviour can be designed while requiring only a very limited understanding of the whole
application it may be used for. In addition to simplifying behaviour design, this last point makes
possible to reuse the same behaviour multiple times.

As we can see in Figure 24, there are two main types of behaviours: simple and composite. Those
behaviours take the same meaning as in JADE: a composite behaviour is a finite state machine in
which each state represents a micro-behaviour and a transition represents the flow of execution from
one micro-behaviour to the next.

Figure 24: Main classes in the Behaviour package.

The MAS2TERING-specific behaviours are described following this template:

Table 5 Behaviours description template

Behaviour name Behaviour name (as specified in D2.2)
Behaviour type Type of JADE behaviour
Description Textual description of the behaviour
Inputs Inputs that the behaviour receives (from agent memory)
Outputs Outputs that the behaviour provide (influencing agent memory or the

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

52	

execution of other behaviours connected by a composite behaviour)
In the following tables, we specify each of the identified behaviours for the four agent classes
described in the previous section. Given that no behaviour is used by multiple agents, we sorted these
behaviours by agents.

Some of these behaviours are “final/working” behaviours (describing actions for the agents) some
others are composite (describing a composition of behaviours) and some others are undefined (to be
defined at a later time of MAS2TERING.

4.1.5.1 DSO-Level Behaviours

Figure 25: DSO FSM behaviours UML diagram

Figure 25 illustrates a general view of the DSO behaviours that are explained in the following
subsections. The whole UML diagram for the DSO behaviours is included in the Annex of this
deliverable.

Behaviour name DSOBehaviour
Behaviour type FSMBehaviour
Description This behaviour combines the DSOPlan, DSOValidate and DSOOperate

phases.
Inputs --
Outputs --/ ORANGE_REGIME (out of MAS2TERING scope)

4.1.5.1.1 DSO Plan

Behaviour name DSOPlan
Behaviour type FSMBehaviour
Description This behaviour combines the working behaviours the DSO performs at

Plan time, as introduced in Section 4.1.1. This behaviour combines

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

53	

RegisterLongTermCongestionPoints, QuaryActiveAggregators and
ForecastNonAggregatorConnections behaviours.

Inputs --
Outputs --
	
Behaviour name RegisterLongTermCongestionPoints
Behaviour type OneShotBehaviour
Description This behaviour publishes the Congestion Points to the Directory

Facilitator. This behaviour aims, in a longer term, at initiating a contact
procedure with active AGRs that are related to a congestion point (cf.
RegisterLongTermCongestionPoints in D5.3).

Inputs Long-term congestion points
Outputs --

Behaviour name QueryActiveAggregators
Behaviour type OneShotBehaviour
Description This behaviour seeks the identity of AGRs that are connected to a long-

term congestion point as well as the long-term congestion points they are
related to. More details are provided in the
RegisterLongTermCongestionPoint protocol in D5.3.

Inputs --
Outputs Active aggregators and the long-term congestion points they are related to.

Behaviour name ForecastNonAggregatorConnections
Behaviour type OneShotBehaviour
Description This behaviour forecasts the energy consumption for the parts of the grid

that are related to a congestion point and not monitored by an AGR.
Inputs Grid model, active aggregators, their connections
Outputs Forecasted consumption plan for connections that are not monitored by an

AGR.

4.1.5.1.2 DSO Validate

Behaviour name DSOValidate
Behaviour type FSMBehaviour
Description This behaviour combines the working behaviours performed by the

DSOAgent at the Validate time, as introduced in Section 4.1.1. This
behaviour combines the ReceiveDPrognosis, ComputeMissingPrognoses,
GridSafetyAnalysis, FlexibilityTradingAGRDSO behaviours

Inputs --
Outputs --/NO_CONGESTION_EXPECTED,

FAILED_SOLVING_CONGESTION

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

54	

Behaviour name ReceiveDPrognoses
Behaviour type OneShotBehaviour
Description This behaviour receives expected D-Prognoses from AGRs and record

them. This behaviour stops either when all expected D-prognoses are
received or when the day-ahead gate closure has passed.

Inputs AGRs expected to send D-Prognoses.
This set encompasses AGRs that are related to a congestion point and for
which (1) no D-Prognosis is known or (2) updated D-Prognoses are
expected after having sent a FlexOrder.

Outputs Updated D-Prognoses/ALL_DPROGNOSES_RECEIVED,
GATE_CLOSED

Behaviour name ComputeMissingPrognoses
Behaviour type CustomBehaviour (to be implemented at a later time of the project)
Description This behaviour evaluates the consumption of the parts of the grid that are

monitored by an AGR but for which no D-prognoses have been provided.
Inputs Set of missing D-Prognoses, grid-model
Outputs Updated D-Prognoses (all D-Prognoses should be completed).

Behaviour name GridSafetyAnalysis
Behaviour type OneShotBehaviour
Description Analyses the grid configuration in order to detect any congestion at the

level of transformers or lines.
Inputs Grid model, D-Prognoses, consumption forecast of non-aggregator

connections
Outputs AGRs involved in congestion / CONGESTION_EXPECTED,

NO_CONGESTION_EXPECTED

Behaviour name FlexibilityTradingAGRDSO
Behaviour type CustomBehaviour (blank for now, to be implemented at a later time of the

project)
Description This behaviour initiates trading operations with AGRs in order to avoid

congestion.
Inputs Active AGRs, grid-model, D-prognoses, long-term congestion points
Outputs --/FAILED_SOLVING_CONGESTION, SENT_FLEX_ORDERS
	

4.1.5.1.3 DSO Operate

Behaviour name DSOOperate
Behaviour type FSMBehaviour

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

55	

Description This behaviour combines the working behaviours that the DSO has to
perform at the Operate time, as introduced in the DSO FSM. This
behaviour consists of the MonitorGrid behaviour.

Inputs --
Outputs --/CONGESTION_DETECTED_ON_OPEN_PTU,

CONGESTION_DETECTED_ON_CLOSED_PTU

Behaviour name MonitorGrid
Behaviour type OneShotBehaviour
Description This behaviour monitors the energy consumption in the grid and receives

new D-Prognoses. It stops when a new D-prognosis causes a congestion.
Inputs Grid model, D-prognoses, incoming D-Prognoses
Outputs --/CONGESTION_EXPECTED_ON_OPEN_PTU,

CONGESTION_EXPECTED_ON_CLOSED_PTU

4.1.5.2 AGR-level behaviours

Figure 26 AGR FSM behaviours UML diagram

Figure 26 illustrates a general view of the AGR behaviours that are explained in the following
subsections. The whole UML diagram for the AGR behaviours is included in the Annex of this
deliverable.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

56	

4.1.5.2.1 AGR Plan

Behaviour name AGRPlan
Behaviour type FSMBehaviour
Description This behaviour combines the RegisterConnections,

QueryCongestionPoints and RetrieveActiveAGRs and
AGRMonitoringAndOptimization according to Section 4.1.2..

Inputs --
Outputs --/ out of MAS2TERING

Behaviour name RegisterConnections
Behaviour type OneShotBehaviour
Description This behaviour sends to the DF the connections (the parts of the grid) in

which the agent has active prosumers. See protocol RegisterConnections
in D5.3.

Inputs Connections, grid-model
Outputs --

Behaviour name QueryCongestionPoints
Behaviour type OneShotBehaviour
Description Requests from the DF the set of congestion points and related DSO to

which the agent is related to. See QueryCongestionPoints in D5.3.
Inputs --
Outputs Congestion-points related to the agent

Behaviour name RetrieveActiveAGRs
Behaviour type OneShotBehaviour
Description Requests the set of active AGRs from the DF.
Inputs --
Outputs Set of active AGRs

4.1.5.2.1.1. AGR Monitoring and Optimization

Behaviour name AGRMonitoringAndOptimization
Behaviour type FSMBehaviour
Description This behaviour combines the SubscribePPlans, ReceivePPlans,

OptimizeInternalPortfolio, TradeFlexibilityForPortfolioOptimization,
WaitForOperateFlexOfferOrDPrognosis, as depicted in the FSMs
illustrated in Section 4.1.2.

Inputs --
Outputs OPERATE_TIME, VALIDATE_D_PROGNOSIS

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

57	

Behaviour name SubscribePPlans
Behaviour type OneShotBehaviour
Description The AGR agent requests PPlans from the set of CEMS agents monitored

by the AGR. See the SubscribePPlans protocol in D5.3.
Inputs Monitored CEMSs
Outputs --

Behaviour name ReceivePPlans
Behaviour type OneShotBehaviour
Description Wait and receives PPlans until having received all CEMS that are

expected to send PPlans have done so. See SubscribePPlans protocol in
D5.3.

Inputs CEMSs expected to submit PPlans, new PPlan updates
Outputs Updated PPlans

Behaviour name OptimizeInternalPortfolio
Behaviour type CustomBehaviour
Description This behaviour internally optimizes the portfolio of CEMS agents (e.g.

opening the local flexibility market, providing FlexOffers to CEMS). See
protocol OptimizeInternalPortfolio in D5.3 for more.

Inputs To be defined in D3.2/D3.3
Outputs To be defined in D3.2/D3.3, updated Aplan

Behaviour name TradeFlexibilityForPortfolioOptimization
Behaviour type CustomBehaviour
Description This behaviour performs AGR-to-AGR interactions in order to optimize

costs by selling flexibility
Inputs To be defined in D3.2/D3.3
Outputs To be defined in D3.2/D3.3 / NEW_FLEX_ORDER (arising from another

AGR), NO_OFFER

Behaviour name WaitForOperateFlexOfferOrRequiredDPrognosis
Behaviour type OneShotBehaviour
Description This behaviour waits for either incoming messages from an external actor

(a flex offer from another AGR or a DPrognosis from a DSO) or for
operate time.
Note: counter-intuitively but according to the USEF framework, AGRs do
not react to PPlans at this time. Reacting to PPlan updates is done only
after the operate phase.

Inputs --
Outputs NEW_FLEX_OFFER, OPERATE_TIME, VALIDATE_D_PROGNOSIS

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

58	

4.1.5.2.2 AGR Validate

Behaviour name AGRValidate
Behaviour type FSMBehaviour	
Description Combines the behaviours to be performed during the validation phase for

the AGR. These behaviours are: IdentifyChangesInDPrognoses,
InformDPrognoses and TradeFlexibilityForGridCapacityManagement.

Inputs --
Outputs OPERATE_TIME, NEW_FLEX_ORDER

Behaviour name IdentifyChangesInDPrognoses
Behaviour type OneShotBehaviour
Description This behaviour compares the former D-Prognoses with the new one and

evaluates the presence of D-prognosis modifications (i.e. whether the
consumption related to a congestion point has changed)

Inputs Aplan, Congestion points
Outputs Updated D-prognoses

Behaviour name InformDPrognosis
Behaviour type OneShotBehaviour
Description This behaviour creates a D-Prognosis per congestion point based on the

current Aplan and sends it to the DSO.
Inputs Congestion points, D-prognoses
Outputs --

Behaviour name TradeFlexibilityForGridCapacityManagement
Behaviour type CustomBehaviour
Description This behaviour handles the flexibility trading between the AGR and the

DSO in order to avoid congestion points.
Inputs To be defined in D3.2 and D3.3
Outputs To be defined in D3.2 and D3.3. OPERATE_TIME or

NEW_FLEX_ORDER

4.1.5.2.3 AGR Operate

Behaviour name AGROperate
Behaviour type FSMBehaviour
Description Combines the behaviours to be performed during the operate phase for the

AGR. These behaviours are: ReceivePPlanUpdates and DetectDeviations
as detailed in the FSM figure in Section 4.1.2.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

59	

Inputs --
Outputs MONITORED_CHANGES_ON_OPEN_PTU,

MONITORED_CHANGES_ON_CLOSED_PTU
(NO_DEVIATION : stay in this phase)

Behaviour name ReceivePPlanUpdates
Behaviour type OneShotBehaviour
Description This behaviour waits for new PPlan updates to be received
Inputs --
Outputs New PPlan Updates

Behaviour name DetectDeviations
Behaviour type OneShotBehaviour
Description Checks whether PPlan updates caused deviations in APlan and D-

prognoses
Inputs New PPlan Updates, PPlan, DPrognoses
Outputs NO_DEVIATION, MONITORED_CHANGES_ON_OPEN_PTU,

MONITORED_CHANGES_ON_CLOSED_PTU

Behaviour name AGRBehaviour
Behaviour type FSMBehaviour
Description This behaviour combines the AGRPlan, AGRValidate and AGROperate

phases according to Section 4.1.2.
Inputs --
Outputs --/ (out of MAS2TERING)

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

60	

4.1.5.3 CEMS-level behaviours

Figure 27: CEMS FSM behaviours UML diagram

Figure 27 illustrates a general view of the CEMS behaviours that are explained in the following
subsections. The whole UML diagram for the CEMS behaviours is included in the Annex of this
deliverable

Behaviour name CEMS Behaviour
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours of the CEMS agent:

ManagePPlanCommunication, ManageNewFlexibilities,
OptimizeInternalPortfolio, ManageDevices and
MonitorAndReportConsumption, as described in Figure []

Inputs --
Outputs --
	
Behaviour name ManagePPlanCommunication
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours of the CEMS agent related to the

management of requests for communicating PPlans. Combined behaviours
are SeverSubscribePPlans, InHomeOptimizer and PublishPPlan, as
described in the FSM figures in Section 4.1.3

Inputs --
Outputs --

Behaviour name ServeSubscribePPlan

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

61	

Behaviour type CustomBehaviour
Description This behaviour handles “SubscribePPlan” requests: the agent waits for

new “SubscribePPlan” messages, decides whether to comply with this
request and sends its acceptance or rejection back to the initiator.
This behaviour implements the receiving side for the first exchange of the
SubscribePPlan protocol (D5.3).

Inputs Means for checking whether the sender is legit or not (to be defined in a
later deliverable)

Outputs Updated set of agents to keep informed about changes in PPlans

Behaviour name InHomeOptimiser
Behaviour type CustomBehaviour
Description This behaviour builds a PPlan that makes uses of flexibility and energy

trade offers in order to minimize energy-related costs while keeping
sufficient satisfaction from prosumers.

Inputs Flexibilities provided by devices. Additional optimization-related
information to be defined in D3.2/D3.3.

Outputs Updated PPlan

Behaviour name PublishPPlan
Behaviour type OneShotBehaviour
Description This behaviour sends PPlans to agents to be kept informed about PPlan

changes
Inputs PPlan, agents to be kept informed about PPlan changes
Outputs --
	
Behaviour name ManageNewFlexibilities
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours of the CEMS agent related to the

management of the evolution of flexibilities from devices. Combined
behaviours are SubscribeFlexibilities, ReceiveFlexibility,
InHomeOptimizer and PublishPPlan, as described the FSM figures in
Section 4.1.3

Inputs --
Outputs --

Behaviour name SubscribeFlexibilities
Behaviour type ProposeInitiator
Description Register to devices agents in order to be informed when the flexibility of a

device changes. See the SubscribeFlexibilities protocol in D5.3.
Inputs Device Agents to be registered to.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

62	

Outputs --
	
Behaviour name ReceiveFlexibilities
Behaviour type OneShotBehaviour
Description This behaviour handles messages from Device Agents indicating a change

of available flexibilities.
Inputs --
Outputs Updated flexibilities
	
Behaviour name OptimizeInternalPortfolio (Receiver)
Behaviour type CustomBehaviour
Description Handles the negotiation in the flexibility market, from the CEMS side.

This behaviour will be defined in D3.2 and D3.3.
Inputs To be defined, FlexRequests, Flexibilities
Outputs Updated FlexOrders

Behaviour name ManageDevices
Behaviour type FSMBehaviour
Description This behaviour combines the plans related to the management of devices.

This behaviour combines RealizePPlan and InformControlSignal.
Inputs --
Outputs --

Behaviour name RealizeP-Plan
Behaviour type OneShotBehaviour
Description This behaviour realises its P-plan for a PTU by sending control signals to

Device Agents.
Inputs P-Plan
Outputs --

Behaviour name InformControlSignals
Behaviour type AchieveREInitiator
Description This behaviour sends control signals (indicating the activity to be

performed by a device) to the corresponding in-home controllable devices.
Inputs Control signals
Outputs --

Behaviour name MonitorAndReportConsumption
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the monitoring of the

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

63	

consumption. This behaviour combines ReceiveDeviceConsumption and
WarnIfDeviation.

Inputs --
Outputs --

Behaviour name ReceiveDeviceConsumption
Behaviour type OneShotBehaviour
Description This behaviour handles the current and expected consumption messages

from device agents
Inputs --
Outputs Updated consumption profile

Behaviour name WarnIfDeviation
Behaviour type OneShotBehaviour
Description This behaviour warns the AGR agent in case of deviation from the

proposed PPlan.
Inputs PPlan, current consumption per device
Outputs --

4.1.5.4 Device-level behaviour

	
Figure 28: Device agent FSM behaviours UML diagram

Figure 28 illustrates a general view of the CEMS behaviours that are explained in the following
subsections. The whole UML diagram for the CEMS behaviours is included in the Annex of this
deliverable

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

64	

	
Behaviour name DeviceAgentBehaviour
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the monitoring of the

consumption. This behaviour combines FSMServeSubscribeFlexibility,
FSMReceiveUserSettings, FSMReceiveUpdateForecast, RealizePlan and
SendCurrentConsumption as detailed in Figure [].

Inputs --
Outputs --

Behaviour name FSMServeSubscribeFlexibility
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to consumption

monitoring. This behaviour combines ServeSubscribeFlexibility,
ComputeFlexibility and PublishFlexibility.

Inputs --
Outputs --

Behaviour name ServeSubscribeFlexibility
Behaviour type OneShotBehaviour
Description This behaviour checks external requests for being informed about

flexibilities. If this request is granted, the requester is added to the list of
agents to inform when flexibilities are updated.

Inputs --
Outputs Updated list of agents to be informed when flexibility changes.

Behaviour name ComputeFlexibility
Behaviour type OneShotBehaviour
Description This behaviour evaluates the flexibilities and expected consumption of a

device based on user settings and forecasts. To be completed in D3.2 and
D3.3.

Inputs Forecasts, user settings, consumption profile generator
Outputs Updated flexibilities

Behaviour name PublishFlexibility
Behaviour type OneShotBehaviour
Description This behaviour send flexibilities to agents to be kept informed about the

device’s flexibilities
Inputs Flexibilities, agents to be informed about device’s flexibilities
Outputs --

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

65	

Behaviour name FSMReceiveUserSettings
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the monitoring of the

consumption. This behaviour combines ReceiveUserSettings,
ComputeFlexibility and PublishFlexibility as detailed in Figure [].

Inputs --
Outputs --

Behaviour name ReceiveUserSettings
Behaviour type CyclicBehaviour
Description Handle the insertion of user settings.
Inputs --
Outputs Updated user settings

Behaviour name FSMReceiveForecastUpdates
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the monitoring of the

consumption. This behaviour combines ReceiveForecastUpdates,
ComputeFlexibility and PublishFlexibility as detailed in Figure [].

Inputs --
Outputs --

Behaviour name SubscribeForecast
Behaviour type CustomBehaviour
Description Register the CEMS agent in the forecast service in order to be notified

when forecasts are updated. To be implemented in D3.2/D3.3
Inputs Forecast services
Outputs --

Behaviour name ReceiveForecastUpdates
Behaviour type OneShotBehaviour
Description The device agent receives via web services the new forecasted values

Inputs Forecasts services
Outputs Updated forecasts

Behaviour name RealizePlan
Behaviour type FSMBehaviour
Description This behaviour combines the behaviours related to the realization of the

plan. This behaviour combines ReceiveControlSignals and

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

66	

SetActuatorValues as detailed in Figure [].
Inputs --
Outputs --

Behaviour name ReceiveControlSignals
Behaviour type OneShotBehavior
Description Receive the control signals from the CEMS agent
Inputs --
Outputs Updated control signals

Behaviour name SetActuatorValues
Behaviour type OneShotBehaviour
Description Set up the actuators of the controllable device with the values to be read

from device configuration.
Inputs Control signals
Outputs --

Behaviour name SendCurrentConsumption
Behaviour type OneShotBehaviour
Description Report the current energy consumption to agents to keep informed about

the consumption of energy
Inputs Monitored consumption, agents to keep informed
Outputs --

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

67	

5 Constraints and objectives
MAS2TERING takes a pragmatic, practical approach when choosing the agent model in order to
maintain the internal agent architecture simple and the system scalable. Each agent is modelled using a
constraint programming approach in which goals and preferences of the agent are modelled using a
mathematical model based on variables and (hard and soft) constraints. More complex agent models
such as Belief-Desired-Intention (BDI) models are not expected [6].

This module implements two main concepts:

1. Variables: A variable is a mathematical object whose value can vary across a set called the
variable´s domain. Variables can be given a value as a result of an observation (e.g. the
external temperature) or as a result of a decision taken by an agent (i.e. a decision variable).
Each variable is associated to a domain and a domain can be discrete or continuous. Another
related class is the VariablesAssignment class that allows assigning specific values (i.e.
contained in their domain) to variables. The set of classes corresponding to these variable
related concepts are illustrated in Figure 29.

Figure 29 Classes in the variable package

2. Constraints: Each constraint is defined over a set of variables. As such all constraints need to
implement the method getVariableSet() that returns the set of variables over which is defined
the constraint. As shown in Figure 30, there two main types of constraints:

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

68	

1. Soft: A soft constraint returns some cost for some assignment of variables. As such a
soft constraint is required to implement the method getValue that given an assignment
for variables returns the corresponding cost4;

2. Hard: A hard constraint must not be violated otherwise the solution is not valid. As
such a hard constraint is required to implement the method isValid that given a
variable assignment returns a boolean indicating if the constraint is satisfied or not.

Figure 30: Classes in the constraint package.

Classes in the package behaviour allow associating to each agent with a set of objectives and
constraints (i.e. goals for socio-economic agents or operation constraints for physical resource agents).

Let 𝐴 be the set of agents. Then, each agent 𝑎! ∈ 𝐴 in MAS2TERING has a set of soft constraints,
namely 𝑆!, and a set of hard constraints, namely 𝐻!. These constraints are added by the methods
addSoftConstraint and addHardConstraint.

Figure 31: MAS2TERING agent class

																																																													
4 Notice that since the cost is not restricted to be positive, this method also allows returning some

reward expressed as negative cost.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

69	

Then, the set of goals of an agent is modelled as a constraint optimisation problem in which each agent
aims to optimise an objective function with respect to some variables (i.e. 𝑋!) in the presence of
constraint on those variables as follows:

Note that since the objective function is actually the sum of the costs returned by individual soft
constraints, it is meant to be minimised. Finally, each agent has also a getCost() function that given an
assignment of values to variables (i.e. a VariableAssignment) returns the cost of this agent with respect
to this state.

In the following, we define the constraints and objectives for each of the specific device agents that
will be instantiated in the MAS2TERING use cases.

5.1 Generator

Next tables show the physical definition in terms of soft and hard constraints that the power schedule
must meet:

Hard constraints:

Pmin ≤ -pgen ≤ Pmax The generator supplies power between a minimum and a maximum
depending on the generator’s specifications.

Rmin ≤ -Dpgen ≤ Rmax R is ramp rate limit; this constraint limits the change of power levels
from one period to the next of a generator.

Soft constraints:

Cost(pgen) = [𝒄𝑻
𝒕!𝟏 * -pgen(t)]

c = β x
c = α x2 + β x

Cost of operating the generator at a given power level over a
single time period.	It can be:		

• linear
• quadratic

where

pgen Generator power schedule
D Difference power schedule between the

current time step and the previous one.
α,β > 0 Cost coefficients.

5.2 Curtailable Load

The soft and hard constraints for a curtailable load are listed below:

Hard constraints:

 The curtailable load is restricted to consume

min

X

s2Si

s(Xi)

subject to: h(Xi), 8h 2 Hi

p
load

(⌧) � 0, 8⌧ = 1, ..., T

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

70	

(i.e. not to produce) energy.

The amount of energy delivered is always less
than the desired.

Soft constraints:

 A linear penalty is applied on the difference
between the desired and the delivered power (i.e
the energy shortfall.)

Where

 Deferrable load power schedule
 Desired load power schedule

 Linear penalty parameter. Greater than zero.

5.3 Deferrable load

The deferrable load does not have soft constraints. However, the energy consumption in each period of
time is constrained by E. In some cases, the load can only be turned on or off in each period of time.
Therefore, two hard constraints can be extracted:

 After the starting time slot, the device needs to
charge the needed amount of energy before the
final time slot.

0 ≤ Pload ≤ Lmax The deferrable load is restricted to consume (i.e.
not to produce) energy (between 0 and Lmax).

Where:

 Deferrable load power schedule
A Minimum time slot
D Maximum time slot
E Total energy required for the time interval A … D

 Maximum energy consumption of the device for each time slot

5.4 Storage

Similar to the deferrable load, a storage device is only defined by hard constraints:

 The power transmitted must be between the
discharging and charging rates limits.

where:

The charge level must not exceed the battery
capacity

Where:

↵ · (d
load

(⌧)� p
load

(⌧)), 8⌧ = 1 . . . T

p
load

(⌧)  d
load

(⌧), 8⌧ = 1, ..., T

DX

⌧=A

p
load

(⌧) = E

�Dmax  p
bat

(⌧)  Cmax, ⌧ = 1, ..., T

q(⌧) = qinit +
⌧X

t=1

pbat(t)

0  q(⌧)  Qmax, ⌧ = 1, ...T

p
load

d
load

↵

Lmax

p
load

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

71	

 Battery power schedule
 Maximum discharging rate
 Maximum charging rate
 Battery capacity

 Battery initial charge

5.5 Fixed load

A Fixed load has a unique hard constraint, which is as follows:

The desired consumption of a fixed load must be
satisfied in each period.

Where:

Table 6 Fixed Load parameters

 Fixed load power schedule
 Desired load power schedule

5.6 External tie

The soft constraints of an external tie vary depending if the external tie allows pulling electricity from
the utility, injecting electricity to the utility or both.

Case pulling from:

Case injecting to:

Case pulling from/injecting
to:

where:

In the same way, this device presents some hard constraints as well:

Case pulling from:
Case injecting to:

Case pulling from/injecting
to:

where

Table 7 External Tie parameters

 External tie power schedule
 Price per unit of energy pulled from the source (Default value)

pbat

�Emax(⌧)  p
ex

(⌧)  0, 8⌧ = 1, ..., T

d
load

p
load

TX

⌧=1

�P in(⌧) · p
ex

(⌧)

TX

⌧=1

�P out(⌧) · p
ex

(⌧)

�(⌧) =
P in(⌧)� P out(⌧)

2

�c(⌧) · p
ex

+ �(⌧) · |p
ex

| 8⌧ = 1 . . . T

|p
ex

(⌧)|  Emax(⌧), 8⌧ = 1, ..., T

0  p
ex

(⌧)  Emax(⌧), 8⌧ = 1, ..., T

Dmax

Cmax

Qmax

qinit

p
load

(⌧) = d
load

(⌧), 8⌧ = 1, ..., T

p
ex

P in

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

72	

 Price per unit of energy injected to the source (Default value)

 Maximum transaction of electricity (Default value: Infinity)

5.7 Transmission line

A transmission line works at the distribution level and may carry some energy losses that are
considered as hard constraints:

 The power transmitted must respect
the maximum capacity.

where:

The power that gets in the line must
be the same that the power that gets
out (power conservation) taking into
account losses.

where:

 First power schedule of the line

 Second power schedule of the line

 Maximum capacity

pL1 + pL2 � �(pL1, pL2) = 0

|p
L1(⌧)� p

L2(⌧)|
2

 Cmax, ⌧ = 1, . . . , T

�(pL1, pL2) : R
T ⇥RT ! RT

+

P out

Emax

pL1

pL2

Cmax

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

73	

6 Behaviours and agents involved in the use cases

We include a short description of the project’s use cases from an agent perspective by specifying
which agents and which behaviours are involved in each use case. For this purpose, we provide a
traceability matrix, in which a cell marked with a “X” denotes that the behaviour/agent is involved in a
given use case

In UC1, the distribution level of a Smart Grid will include various types of active dynamic devices,
such as distributed generators based on solar and wind, batteries, deferrable loads, curtailable loads,
and electric vehicles, whose control and scheduling amount to a very complex management problem.

UC1 concerns the Prosumer in-home optimisation, the interoperability and the connection to handle
requests/connections to the flexibility market via the aggregator. Agents involved in this UC are:

1. CEMS

2. Device that represents the devices installed at home level. Within these devices many subtypes
are involved.

The CEMS agent is owner of all the in-home devices and the Distributed Energy Resources (DERs)
inside its home. Each of those physical devices has a cost function and hence the cost function of the
prosumer is the sum of costs functions of its devices. When deploying the system many Device agents
but just one CEMS may be instantiated.

UC2 deals instead with local management at the district level. Since the local community is considered
as a collection of consumption/generation nodes that are managed by a single entity, the aggregator.
Therefore a new agent takes place in the system, the Aggregator. It expected to communicate with the
houses (CEMS agents) that belong to this district. Several Device and CEMS agents can be involved
in this use case which would be associated to one Aggregator agent.

UC3 is considered as an extension of UC2 because it takes the entire low voltage power grid as the
union of many local communities in a given area: the concept of DSO emerges. The use case may
involve one or more DSOs which communicate with the aggregators in order to negotiate the power
plans and inform the congestion points of the power grid. Furthermore, each aggregator exchange
messages with CEMS agents which are also linked to Device agents.

Agents UC1 UC2 UC3
DSO X
Aggregator X X X
CEMS X X X
Device (subtypes) DeferrableLoad,

CurtailableLoad,
FixedLoad, Battery

DeferrableLoad,
CurtailableLoad,

FixedLoad, Battery

DeferrableLoad,
CurtailableLoad,

FixedLoad, Battery,
TransmissionLine

Table 8 Agents used in use cases

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

74	

Table 8 and Table 9 show all the agent types and behaviours implemented in the platform. As we can
see, they can be assigned to one or more use cases.

Table 9 Behaviours used in use cases

Behaviours UC1 UC2 UC3
PublishP-Plan X X X
InHomeOptimiser X X X
ReceiveFlexibility X X X
HandleFlexibilityRequest X X X
ServeSubscribePPlan X X
SubscribeFlexibilities X X X
RealisePlan X X X
InformControlSignals X X X
SubscribeForecast X X X
ServeSubscribeFlexibility X X X
ReceiveUserSettings X X X
ReceiveUpdatedForecast X X X
ComputeFlexibility X X X
PublishFlexibility X X X
ReceiveControlSignals X X X
SetActuatorValues X X X
RegisterConnections X X
QueryCongestionPoints X X
SubscribePPlans X X
ReceivePPlan X X
InformDPrognosis X
IdentifyChangesInAPlan X X
IdentifyChangesInDPrognoses X
OptimiseInternalPortfolio X X
TradeFlexibilityForPortfolioOptimisatio
n

 X X

FlexibilityTradingAGRDSO X X
ForecastNonAggregatorConnections X
ComputeMissingPrognoses X
GridSafetyAnalysis X
RegisterLongTermCongestionPoints X
ReceiveDPrognoses X
QueryActiveAggregators X

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

75	

7 Conclusions and next steps

This deliverable provides a first version of the implementation of the multi-agent and holonic platform
for MAS2TERING. To extract the requirements and for the analysis phase, our deliverable was based
on the USEF framework described in deliverable D1.6, with which MAS2TERING aligns, and the use
cases defined in deliverable D6.1, which will be used to validate our proposal.

GAIA methodology, which has been adopted in deliverable D2.2 as agent development methodology,
has been also used in this deliverable. Furthermore, the MAS platform, defined in deliverable D2.2 has
been also used as the base for the implementation of the identified agents, their behaviours, and their
constraints.

As for the Smart grid model, this deliverable presents a MAS2TERING common data model in order
to allow the common expression of information exchange between agents. It also details the alignment
of this common data model with the three identified standards for use, namely the CIM standard for
modelling the electrical domain, the OpenADR standard for modelling demand response within the
Smart Grid, and the Energy@Home standard for domestic conceptual modelling and their relevance
for the different use cases.

As for the agents, this deliverable details the implementation of the four types of agents that have been
defined inside the Agents Model component, and that will be instantiated in the project use cases that
are specified in the deliverable D6.1. These agents are the Device agent (with its seven subtypes
depending on the type of flexibility provided), the CEMS agent, the AGR agent, and the DSO agent.
Each of the subtypes of the Device agent has its constraints and objectives, which have been specified
and implemented in this deliverable. The communication protocols between the agents are defined in
deliverable D5.3, and will be implemented inside the Communication and protocol component (as part
of D5.4), whereas the security aspects studied in deliverable D4.2 will be implemented inside the
Security component of the MAS platform.

This deliverable is accompanied by the first version software implementation of the specified agents
and their behaviours in this document. The following deliverables in this work package shall focus on
designing and implementing the Forecasting algorithms and the optimisation protocols in order to be
integrated into the agents, completing the MAS implementation phase.

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

76	

References

	

[1]		 E.	P.	N.	I.	S.	Pavlos	Moraitis,	“Engineering	JADE	Agents	with	the	Gaia	Methodology,”	Agent	
Technologies,	Infrastructures,	Tools,	and	Applications	for	E-Services	,	2002.		

[2]		 M.	Wooldridge,	D.	Kinny	and	N.	R.	Jennings,	“"The	Gaia	methodology	for	agent-oriented	analysis	
and	design,”	Autonomous	Agents	and	multi-agent	systems,	vol.	3.3,	pp.	285-312,	2000.		

[3]		 F.	Bellifemine,	G.	Caire	and	D.	Greenwood,	Developing	multi-agent	systems	with	JADE,	Wiley,	
2007.		

[4]		 N.	I.	S.	Pavlos	Moraitis,	“The	Gaia2Jade	process	for	multi-agent	systems	development,”	Applied	
Artificial	Intelligence	,	vol.	20,	no.	2-4,	pp.	251-273,	2006.		

[5]		 USEF,	“USEF:	The	framework	explained,”	USEF,	2015.	

[6]		 A.	S.	Georgeff,	“DI	Agents:	from	theory	to	practice,”	in	B.	First	International	Conference	on	
Multiagent	Systems	,	San	Francisco,	California,	USA,	1995.		

[7]		 D.	-.	D.	o.	E.	[online],	“Title	XIII	Smart	Grid,”	[Online].	Available:	
http://www.oe.energy.gov/DocumentsandMedia/EISA_Title_XIII_Smart_Grid.pdf.	

[8]		 M.	McGranaghan	and	B.	Deaver,	“Sensors	and	Monitoring	Challanges	in	the	Smart	Grid,”	in	
Future	of	Instrumentation	International	Workshop	(FIIW),	2012.		

[9]		 E.	C.	J.	L.	S.	B.	M	Kraning,	“Dynamic	Network	Energy	Management	via	Proximal	Message	
Passing,”	Foundations	and	Trends	in	Optimization,	vol.	1,	no.	2,	pp.	73-126,	2014.		

[10]		P.	S.	a.	S.	Thiébaux,	“Distributed	Multi-Period	Optimal	Power	Flow	for	Demand	Response	in	
Microgrids,”	in	e-Energy,	Canberra,	2015.		

[11]		R.	Segovia	and	M.	Sanchez,	“Set	of	common	functional	requirements	of	the	Smart	Meter,”	
European	Commission,	2011.	

[12]		EUROPEAN	COMMISSION,	“Report	from	the	Commission:	Benchmarking	smart	metering	
deployment	in	the	EU-27	with	a	focus	on	electricity,”	Brussels,	2014.	

[13]		M.	Pau,	A.	Pegoraro	and	S.	Sulis,	“Branch	current	state	estimator	for	distribution	system	based	
on	synchronised	measurements,”	IEEE	International	Workshop	on	Appled	Measurements	for	
Power	Systems	(AMPS),	pp.	53-58,	2012.		

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

77	

[14]		M.	Pau,	P.	Pegoraro	and	S.	Sulis,	“Efficient	branch	Current	based	Distribution	System	State	
Estimator	in-	luding	Synchronised	Measurements,”	IEEE	Transactions	on	Instrumentation	and	
Measurements,	2013.		

[15]		M.	Pau,	P.	Pegoraro	and	S.	Sulis,	“WLS	Distribution	System	State	Estimator	Based	on	Voltages	or	
Branch	Currents:	Accuracy	and	Performance	Comparison,”	IEEE	Instrumentation	and	
Measurement	Technology	Conference	I2MTC	,	pp.	493-498,	2013.		

[16]		J.	Liu,	F.	Ponci,	A.	Monti,	C.	Muscas	and	P.	Pegoraro,	“Trade-Offs	in	PMU	Deployment	for	State	
Estimation	in	Active	Distribution	Grids,”	IEEE	Transactions	on	Smart	Grids,	vol.	3,	no.	2,	pp.	915-
924,	2012.		

[17]		J.	Liu,	F.	Ponci,	A.	Monti,	C.	Muscas,	P.	Pegoraro	and	S.	Sulis,	“Optimal	Placement	for	Robust	
Distributed	Measurement	Systems	in	Active	Distribution	Grids,”	IEEE	Instrumentation	and	
Measurement	Technology	Conference	I2MTC	2013	Minneapolis,	pp.	206-211,	2013.		

[18]		K.	D.	McBee,	“Benefits	of	Utilizing	a	Smart	Grid	Monitoring	System	to	Improve	Feeder	Voltage,”	
in	North	America	Power	Symposium	(NAPS),	2009.		

[19]		L.	Kumar,	“A	literature	review	on	Distribution	System	State	Estimation,”	SMART	GRID	
Technologies,	2015.		

[20]		a.	L.	C.	L.	Oliva,	“REST	Web	Services	for	Collaborative	Work	Environments.	In:	Frontiers	in	
Artificial	Intelligence	and	Applications,”	in	Proceedings	of	the	12th	International	Conference	of	
the	Catalan	Association	for	Artificial	Intelligence.,	Amsterdam,	2009.		

[21]		E.	W.	a.	R.	A.	C.	Pautasso,	“REST:	Advanced	Research	Topics	and	Practical	Applications,”	in	47-48,	
NewYork,	2014.		

[22]		SOAPUI,	“Best	Practices:	Understanding	REST	Headers	and	Parameters,”	[Online].	Available:	
https://www.soapui.org/testing-dojo/best-practices/understanding-rest-headers-and-
parameters.html.	[Accessed	23	Feb	2016].	

	

	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

78	

Annex A

A.1 Finite State Machines

This section introduces further information for understanding the meaning of FSMs described in this
document. FSMs model the possible evolutions of the states of a system. Basically, a system is
assumed to be in a given state. The system can change from one state to another due to the occurrence
of certain events (or actions), depending on the current state.
Slightly more formally, a FSM is composed of a set of states (represented by nodes) and transitions
(represented by arrows). One of these states is referred to as the initial state (represented by a simple
black dot) and another state is referred to as the final state. Each transition is related to an event
(represented by labels near the arrows). When there is only one possible transition, we hide the event
for sake of simplicity.

The system is run as follows: system “starts” at the initial state. When an event occurs, the system
evolves from the current state to another, following the transition that possesses the adequate event
name. When a final state is reached, the system is stopped. Note that final states are not necessarily
reachable nor reached: the system can run forever.

FSMs are used in MAS2TERING for describing agent behaviours as such. Each state is a behaviour.
In other words, when the system is in a given state, then the agent is performing the related behaviour
(in practice, this behaviour consists of a procedure that is executed until a function indicates that this
behaviour is terminated). An event is raised when the behaviour is completed. The nature of the event
is determined by how this behaviour was performed (e.g. if congestion was discovered or not). In
overall, the agent is performing a given behaviour until this behaviour is completed. Then the agent
triggers a transition and starts performing another behaviour, until a final state is reached.

In addition to the basic FSM constructs, we rely on two more elaborated FSM constructs: forks (or
parallel executions) and hierarchical FSMs. Forks are a special form of transition. When firing such a
transition, the system goes into not one but a set of states. Basically, the system “runs” multiple FSMs
in parallel. In our case, parallelism consists of a round-robin: each FSM is run in turn, one after the
other
Hierarchical FSMs are a specific way for representing states. Basically, this technique consists in
representing the internal details of what happens in a state as a FSM. In other words, a state/behaviour
of a FSM is represented in using another FSM. The event arising from a FSM-based state matches the
last event raised within this state. In other words, a state is, instead of a piece of code, another FSM.
When firing such a state, a user can “zoom in” this state and find another FSM describing how this
state is being executed. This representation is very common for modelling MAS agents. Further details
about the FSM formalism and their use for building MAS agents in [3].
	
	

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

79	

Annex B

B.1 Conversion process from ontologies to JADE

Through this conversion process, the ontology’s axioms were formalised using JADE constructs, as
shown in Figure 32, Figure 33, and Figure 34, which show the formalisation of the vocabulary, a class
(including inheritance and data properties) and object properties (referred to as predicates in JADE
documentation) respectively.

Figure 32 Except of JADE ACL vocabulary definition

	
	

	

Deliverable D3.1 Version 1.0
MAS2TERING Multi-agent systems holonic platform generic components May 2016

	

	

80	

Figure 33 Example of JADE ACL ontology class definition

Figure 34 Example of JADE ACL ontology predicate definition

